Diversidad fenotípica y funcional de los linfocitos B

Leopoldo Santos-Argumedo

Resumen


Durante muchos años se ha considerado que la función de los linfocitos B es únicamente servir de precursores de las células plasmáticas productoras de anticuerpos; sin embargo, esta visión reduccionista se ha cuestionado en los últimos 30 años. La primera gran sorpresa ocurrió en el decenio de 1970, cuando se demostró que los linfocitos B no constituyen una población homogénea, sino que está constituida por diversas subpoblaciones con origen y funciones distintas que incluyen a la inmunidad innata y la adquirida. Durante el decenio de 1980 se descubrió que los linfocitos B son una fuente importante de citocinas y que extienden sus funciones de la presentación de antígenos a los linfocitos T a funciones de cooperación celular. A partir del año 2000 quedó claro que las células B son tan heterogéneas, hablando en términos funcionales, como lo son los linfocitos T, y que extienden sus funciones a la regulación de la respuesta inmunológica. La historia aún no concluye porque sigue el descubrimiento de nuevas funciones, que tendrán que ser incorporadas al corpus principal del conocimiento acerca de los mecanismos mediante los cuales funciona la respuesta inmunológica. Así, podemos concluir con una felicitación para los linfocitos B por estos primeros 50 años, y les auguramos al menos otros 50 años más de crecimiento robusto.

Palabras clave


diversidad fenotípica; diversidad funcional; linfocito B; citocinas; regulación

Texto completo:

PDF HTML PubMed (English)

Referencias


Silverstein AM. A history of immunology, 2nd Edition. Academic Press, 2009.

Ramón y Cajal S. Manual de Anatomía Patológica General y fundamentos de bacteriología. 4a ed. Madrid, Imprenta Juan Pueyo, 1905.

Fagraeus A. The plasma cellular reaction and its relation to the formation of antibodies in vitro. J. Immunol 1948;58:1-13.

Coons AH, Leduc EH, Connolly JM. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 1955;102:49-60.

Glick G, Chang TS, Jaap RG. The bursa of Fabricius and antibody production. Poultry Sci 1956;35:224-234.

Cooper MD, Peterson RDA, Good RA. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 1965;205:143-146.

Cooper MD, Peterson RDA, South MA, Good RA. The functions of the thymus system and the bursa system in the chicken. J Exp Med 1966;123:75-102.

Coombs RRA, Feinstein A, Wilson AB. Immunoglobulin determinants on the surface of human lymphocytes. Lancet 1969;2:1157-1160.

Raff MC, Sternberg M, Taylor RB. Immunoglobulin determinants on the surface of mouse lymphoid cells. Nature 1970;225:553-554.

Raff MC. Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology 1970;19:637-650.

Abney ER, Parkhouse RM. Candidate for immunoglobulin D present on murine B lymphocytes. Nature 1974;252:600- 602.

Abney ER, Cooper MD, Kearney JF, Lawton AR, Parkhouse RM. Sequential expression of immunoglobulin on developing mouse B lymphocytes: a systematic survey that suggests a model for the generation of immunoglobulin isotype diversity. J Immunol 1978;120:2041-2049.

Scher I, Ahmed A, Strong DM, Steinberg AD, Paul WE. X-linked B-lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J Exp Med 1975;141:788-803.

Scher I, Steinberg AD, Berning AK, Paul WE. X-linked Blymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J Exp Med 1975;142:637-650.

Scher I, Sharrow SO, Paul WE. X-linked B-lymphocyte defect in CBA/N mice. III. Abnormal development of B-lymphocyte populations defined by their density of surface immunoglobulin. J Exp Med 1976;144:507-518.

Mosier DE, Scher I, Paul WE. In vitro responses of CBA/N mice: spleen cells of mice with an X-linked defect that precludes immune responses to several thymus-independent antigens can respond to TNP-lipopolysaccharide. J Immunol 1976;117:1363-1369.

Mond JJ, Scher I, Mosier DE, Baese M, Paul WE. T-independent responses in B cell-defective CBA/N mice to Brucella abortus and to trinitrophenyl (TNP) conjugates of Brucella abortus. Eur J Immunol 1978;8:459-463.

Ahmed A, Scher I, Sharrow SO, Smith AH, Paul WE, et al. B-lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B-lymphocyte differentiation alloantigens. J Exp Med 1977;145:101-110.

Scher I, Ahmed A, Sharrow SO. Murine B lymphocyte heterogeneity: distribution of complement receptor-bearing and minor lymphocyte-stimulating B lymphocytes among cells with different densities of total surface Ig and IgM. J Immunol 1977;119:1938-1942.

Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-497.

Lanier LL, Warner NL, Ledbetter JA, Herzenberg LA. Expression of Lyt-1 antigen on certain murine B cell lymphomas. J Exp Med 1981;153:998-1003.

Kantor AB, Herzenberg LA. Origin of murine B cell lineages. Annu Rev Immunol 1993;11:501-538.

Herzenberg LA. B-1 cells: the lineage question revisited. Immunol Rev 2000;175:9-22.

Murphy KM. Janeway’s Immunobiology. 8th edition. Garland Science, 2011.

Andrew EM, Mackenzie NM, Parkhouse RM. Functional differences associated with quantitative distribution of membrane immunoglobulin, Fc receptors and Ia on mouse B cells. Immunology 1985;54:233-240.

Cambier JC, Lehmann KR. Ia-mediated signal transduction leads to proliferation of primed B lymphocytes. J Exp Med 1989;170:877-886.

Partida-Sánchez S, Garibay-Escobar A, Frixione E, Parkhouse RM, Santos-Argumedo L. CD45R, CD44 and MHC class II are signaling molecules for the cytoskeleton-dependent induction of dendrites and motility in activated B cells. Eur J Immunol 2000;30:2722-2728.

Santos-Argumedo L, Teixeira C, Preece G, Kirkham PA, Parkhouse RM. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J Immunol 1993;151:3119-3130.

Howard M, Grimaldi JC, Bazan JF, Lund FE, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993;262:1056-1059.

Torres RM, Law CL, Santos-Argumedo L, Kirkham PA, et al. Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J Immunol 1992;149:2641-2649.

Parkhouse RM, Santos-Argumedo L, Teixeiral C, Henry RV, Wawrzynczak E. Two surface antigen targets for immunotoxin-mediated elimination of normal and neoplastic murine B cells. Curr Top Microbiol Immunol 1992;182:331-335.

Santos-Argumedo L, Kincade PW, Partida-Sánchez S, Parkhouse RM. CD44-stimulated dendrite formation (‘spreading’) in activated B cells. Immunology 1997;90:147- 153.

Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 2001;13:195-201.

Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 2009;9:767-777.

Martin F, Kearney JF: Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19 and btk. Immunity 2000;12:39-49.

Martin F, Kearney JF. Marginal-zone B cells. Nature Rev Immunol 2002;2:323-335.

Claman HN, Chaperon EA. Immunologic complementation between thymus and marrow cells. A model for the two-cell theory of immunocompetence. Transplant Rev 1969;1:92-113.

Mitchison NA. The carrier effect in the secondary response to hapten-protein conjugates. I. Measurement of the effect with transferred cells and objections to the local environment hypothesis. Eur J Immunol 1971;1:10-17.

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996;183:1161-1172.

Gordon J, Ley SC, Melamed MD, English LS, Hughes-Jones NC. Immortalized B lymphocytes produce B-cell growth factor. Nature 1984;310:145-147.

Yokoi T, Miyawaki T, Yachie A, Kato K, et al. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 1990;70:100-105.

O’Garra A, Stapleton G, Dhar V, Pearce M, et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol 1990;2:821-832.

Harris DP, Haynes L, Sayles PC, Duso DK, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000;1:475-482.

Mosmann T. Complexity or coherence? Cytokine secretion by B cells. Nat Immunol 2000;1:465-466.

Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol 2010;10:236-247.

Tedder TF. B10 cells: a functionally defined regulatory B cell subset. J Immunol 2015;194:1395-1401.

Santos-Argumedo L. Natural antibodies. Advances in Neuroimmune Biology 2012;3:345-352.

Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013;13:118-132.

Swanson CL, Pelanda R, Torres RM. Division of labor during primary humoral Immunity. Immunol Res 2013;55:277-286.

Zhang X. Regulatory functions of innate-like B cells. Cell Mol Immunol 2013;10:113-121.

Jahrsdörfer B, Blackwell SE, Wooldridge JE, Huang J, et al. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin- 21-based activation. Blood 2006;108:2712-2719.

Cupi ML, Sarra M, Marafini I, Monteleone I, et al. Plasma cells in the mucosa of patients with inflammatory bowel disease produce granzyme B and possess cytotoxic activities. J Immunol 2014;192:6083-6091.




DOI: http://dx.doi.org/10.29262/ram.v62i4.136

Enlaces refback

  • No hay ningún enlace refback.