Evolución y filogenia de los linfocitos B

Fabiola Claudio-Piedras, Humberto Lanz-Mendoza

Resumen


Los linfocitos B son unos de los tipos celulares más importantes de la respuesta inmunitaria de los mamíferos. El origen y evolución de este tipo celular se desconocen, pero el linfocito B bona fide aparece en peces. En esta revisión se analizan los principales componentes de la respuesta inmunitaria en invertebrados, su distribución filogenética y la permanencia de algunas propiedades que permitieron el surgimiento del linfocito B. Se parte de la idea de que muchos de los componentes que caracterizan a los linfocitos B están distribuidos desde los invertebrados; sin embargo, es en el linfocito donde se integran todos estos componentes que le dan identidad a este tipo celular. El conocimiento actual de los linfocitos proviene, en su mayor parte, del estudio de la fisiología en mamíferos y como mayor representante el ratón. El origen del linfocito B, sus mecanismos alternativos de generación de diversidad de receptores, su respuesta inmunitaria efectora y la generación de memoria, requieren para su estudio de un abordaje multidisciplinario y con enfoque evolutivo. 


Palabras clave


linfocito B; evolución; filogenia; invertebrados

Texto completo:

PDF HTML PubMed (English)

Referencias


Pieper K, Grimbacher B, Eibel H. B-cell biology and development. Journal of Allergy and Clinical Immunology. 2013;131(4):959-71. doi:10.1016/j.jaci.2013.01.046 2. Oropallo MA, Cerutti A. Germinal center reaction: Antigen affinity and presentation explain it all. Trends in Immunology. 2014;35(7):287-9. doi:10.1016/j.it.2014.06.001

Tsuneto M, Kajikhina E, Seiler K, Reimer A, Tornack J, Bouquet C, Melchers F. Environments of B cell development. Immunology Letters, 2014;157(1-2):60-63. doi:10.1016/j. imlet.2013.11.011

Kurosaki T, Kometani K, Ise W. (). Memory B cells. Nature Reviews Immunology. 2015;15(3):149-59. doi:10.1038/ nri3802

Jerne NK. The Natural-Selection Theory of Antibody Formation. Proceedings of the National Academy of Sciences of the United States of America. 1955;41:849-57. doi:10.1073/pnas.41.11.849

Nossal GJV. One cell, one antibody: prelude and aftermath. Immunological Reviews. 2007;185(10):15-23. doi:10.1038/ ni1007-1015

Parra D, Takizawa F, Sunyer JO. Evolution of B Cell Immunity. Annual Review of Animal Biosciences. 2013;1:65-97. doi:10.1146/annurev-animal-031412-103651

Herrin BR, Cooper MD, Merino MC, Gruppi A, Weissman IL. Immunology: Fifty years of B lymphocytes. Journal of Immunology 2015;1(3):139-41. doi:10.1038/517139a

Cadavid LF. La evolución de sistemas complejos: el caso del sistema inmune en animales. Acta biol. Colomb. 2009;14:247-54.

Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. Elsevier. 7ª edición. 2012. pp 2-6.

Lanz-Mendoza H, Hernández-Martínez S. Y Darwin tenía razón. La evolución del sistema inmunitario. Ciencia. 2015;66:60-6.

Ruppert EE, Barnes RD. Zoología de los invertebrados. 6a edición. Mc Graw Hill-Interamericana; 1996. p 2.

Bromham L. Molecualr clocks and explosive radiations. J. Mol Evol 2003;13-20

Dzik JM. The ancestry and cumulative evolution of immune reactions. Acta Biochimica Polonica. 2010;57(4):443-66. doi:20101980 [pii]

Gordon S. Elie Metchnikoff, the man and the myth. J Innate Immun. 2016 Feb 3. [Epub ahead of print]. doi:10.1159/0004433312016.

Altincicek B, Vilcinskas A. Metamorphosis and collagen- IV-fragments stimulate innate immune response in the greater wax moth, Galleria Mellonella. Dev Comp Immunol. 2006;30:1108-18.

Hoffman W, Lakkis FG, Chalasani G. B Cells, Antibodies, and More. Clin J Am Soc Nephrol. 2016;11:137-54.

Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2009;11:47-59.

Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10:725-32.

Barclay A. Membrane proteins with immunoglobulin-like domains--a master superfamily of interaction molecules. Semin Immunol. 2003;15:215-23.

Leshchyns’ka I, Sytnyk V. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons. Front Cell Dev Biol. 2016;16;4:9.

Lee KY, Horodyski FM, Valaitis AP. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar. Insect Biochem Mol Biol. 2002;32:1457-67.

Li W, Terenius O, Hirai M. Cloning, expression and phylogenetic analysis of Hemolin, from the Chinese oak silkmoth, Antheraea pernyi. Dev Comp Immunol. 2005;29:853-64.

Lanz-Mendoza H, Bettencourt R, Fabbri M. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms. Cell Immunol. 1996;169:47-54.

Daffre S, Faye I. Lipopolysaccharide interaction with hemolin, an insect member of the Ig-superfamily. FEBS Lett. 1997;19;408(2):127-30.

Hirai M, Terenius O, Li W. Baculovirus and dsRNA induce Hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol. 2004;13:399-405.

Bettencourt R, Lanz-Mendoza H, Lindquist KR. Cell adhesion properties of hemolin, an insect immune protein in the Ig superfamily. Eur J Biochem. 1997;15:630-7.

Bettencourt, R, Terenius O, Faye I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol Biol 2002;11(3):267-71.

Eleftherianos I, Millichap PJ, Reynolds SE. RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev Comp Immunol. 2006;30:1099-107.

Guo P, Hirano M, Brantley R. Dual nature of the adaptive immune system in lampreys. Nature 2009;459:796-902.

Im SP, Lee JS, Kim SW, Yu JE, Kim YR, Kim J, Lee JH, Jung TS. Investigation of variable lymphocyte receptors in the alternative adaptive immune response of hagfish. Dev Comp Immunol. 2016;55:203-10.

Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 2005;310:19703. doi:10.1126/science.1119420

Guo P, Hirano, M Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD. Dual nature of the adaptive immune system in lampreys. Nature. 2009;459(7248):796-801. doi:10.1038/nature08354

Smith PH, Mwangi JM, Afrane YA, Yan G, Obbard DJ, Ranford-Cartwright LC, Little TJ. Alternative splicing of the Anopheles gambiae Dscam gene in diverse Plasmodium falciparum infections. Malar J. 2011;10:156

Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 2006;4(7):e229.

Watson FL, Puttmann-Holgado R, Thomas F. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309:1874-1878.

Kaech, SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2:251-262.

Schmid-Hempel P. Natural insect host-parasite systems show immune priming and specificity: puzzles to be solved. BioEssays. 2005;27:1026-34.

Roth O, Sadd B M, Schmid-Hempel P. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Procc Biol Scien.Proc. 2009;276:145-51.

Garduño-Contreras J, Lanz-mendoza H, Franco B, Nava A, Pedraza-reyes M, Canales-Lazcano J. Insect Immune priming: ecology and experimental evidence. Ecol Entomol. 2016; DOI: 10.1111/een.12300.

Moret Y, Siva-Jothy MT. Adaptive innate immunity? Responsive- mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci.2003;270:2475-2480.

Pham LN, Dionne M S, Shirasu-Hiza M. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathogens 2007;3:e26.

Contreras-Garduño J, Rodríguez, MC Rodríguez MH, Alvarado A. Plasmodium berghei induces priming in Anopheles albimanus independently of bacterial co-infection Dev Comp Immunol. 2015;52:172-81.

Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Transgenerational immune priming in a social insect. Biol Lett. 2005;1:386-8.

Cannistra SA, Vellenga E, Groshek P. Human granulocytemonocyte colony-stimulating factor and interleukin 3 stimulate monocyte cytotoxicity through a tumor necrosis factor-dependent mechanism. 1988;71:672-676.

Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, Martínez-Barnetche J, Alvarado-Delgado A, Izquierdo J, Herrera-Ortiz A, Moreno-García M, Velazquez-Meza ME, Valverde V, Argotte-Ramos R, Rodríguez MH, Lanz-Mendoza H.Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. Dev Comp Immunol. 2015;52:172-81.

Klein, J. Are invertebrates capable of anticipatory immune responses? Scand J Immunol. 1989;29:499-505.

Blok BA, Arts RJ, van Crevel R. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol. 2015;pii: jlb.5RI0315




DOI: http://dx.doi.org/10.29262/ram.v63i2.150

Enlaces refback

  • No hay ningún enlace refback.