Tejido adiposo: función inmune y alteraciones inducidas por obesidad

Gloria Bertha Vega-Robledo, María Guadalupe Rico-Rosillo

Resumen


El tejido adiposo, actualmente considerado un órgano con funciones neuroinmunoendocrinas, participa en la homeostasis del organismo. Posee gran plasticidad y variabilidad funcional acorde con la ingesta de nutrientes o con el incremento o la disminución de su volumen tisular, el cual modifica la función y el número de las células que lo integran o llegan a él. Los elementos liberados anormalmente por estas células, entre otros citocinas y adipocinas, ocasionan inflamación local y sistémica, predominantemente cuando provienen del tejido adiposo visceral y pueden afectar diversos órganos como el hígado y el sistema cardiovascular. Se ha señalado que la obesidad implica un mayor riesgo de padecer enfermedades inflamatorias, metabólicas, autoinmunes, alérgicas, alteraciones en la cicatrización y cáncer.


Palabras clave


Tejido adiposo; Función inmune; Inflamación; Obesidad; Síndrome metabólico

Texto completo:

PDF PubMed (English)

Referencias


Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming toward fatty acid-anabolic and catabolic pathways. Mol Metab. 2016;5(5):352-365. DOI: 10.1016/j.molmet.2016.03.002

Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219-227. DOI: 10.1016/j.cmet.2015.06.022

Cinti S. Pink adipocytes. Trends Endocrinol Metab. 2018;29(9):651-666. DOI: 10.1016/j.tem.2018.05.007

Charriere G, Cousin B, Arnaud E, André M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage evidence of plasticity. J Biol Chem. 2003;278(11):9850-9855. DOI: 10.1074/jbc.M210811200

Wang W, Sale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016;17(11):691-702. DOI: 10.1038/nrm.2016.96

Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that Brown and White adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007;104(11):4401-4406. DOI: 10.1073/pnas.0610615104

Ussar S, Lee Y, Darkel SN, Boucher J, Haering MF, Kleinridders A, et al. ASC-1, PAT2 and P2RX5 are cell surface markers for white, beige and brown adipocytes. Sci Transl Med. 2014;6(247):247ra103. DOI: 10.1126/scitranslmed.3008490

Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):100-1004. DOI: 10.1038/nature07221

Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, et al. BMP4 and MBP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol. 2014;306(5):C431-C440. DOI: 10.1152/ajpcell.00290.2013

Cinti S. The adipose organ at a glance. Dis Models Mech. 2012;5(5):588-594. DOI: 10.1242/dmm.009662

Billon N, Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep. 2012;8(1):55-66. DOI: 10.1007/s12015-011-9242-x

Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-376. DOI: 10.1016/j.cell.2012.05.016

Vohl ME, Sladek R, Robitailla J, Gurd S, Marceau P, Richard D, et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res. 2004;12(8):1217-1222. DOI: 10.1038/oby.2004.153

Rehrer CW, Karimpuour-Fard A, Hernandez TI, Law CK, Stob N, Hunter L, et al. Regional differences in subcutaneous adipose tissue gene expression. Obesity (Silver Spring). 2012;20(11):2168-2173. DOI: 10.1038/oby.2012.117

Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 2015;22(4):734-740. DOI: 10.1016/j.cmet.2015.08.001

Wang QA, Tao C, Gupta R, Scherer P. Tracking adipogenesis during white adipose tissue development, expantion and regeneration. Nat Med. 2013;19:1338-1344.

Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucosa homeostasis. J Clin Invest. 2015;125(2):478-486. DOI: 10.1172/JCI78362

Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22(4):546-559. DOI: 10.1016/j.cmet.2015.09.007

Frontini A, Vitali A, Peregrini J, Murano I, Romiti C, Ricquier D, et al. White-to-brown transdifferentiation of omental cipocytes in patients affected by pheocromocytoma. Biochim Biophys Acta. 2013;1831(5):950-959. DOI: 10.1016/j.bbalip.2013.02.005

Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovascular Res. 2017;113(9):1046-1054. DOI: 10.1093/cvr/cvx086

Pachón-Peña G, Serena C, Ejerque M, Petriz J, Durán X, Oliva-Olivera W, et al. Obesity determines the immunophenotypic profile and functional characteristics of human mesenchymal stem cells from adipose tissue. Stem Cells Transl Med. 2016;5(4):464-475. DOI: 10.5966/sctm.2015-0161

Wolf G. Glucocorticoids in adipocytes stimulate visceral obesity. Nutr Rev. 2002;60(5 Pt 1):148-151. DOI: 10.1301/00296640260093823

Rangel-Moreno J, Moyron-Quiroz JE, Carragher DM, Kusser K, Hartson L, Moquin A, et al. Omental milky spots develop in the abscence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 2009;30(5):731-743. DOI: 10.1016/j.immuni.2009.03.014

Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010-1013. DOI: 10.2337/db06-1656

Sag D, Krause P, Hefrick CC, Kronenberg M, Wingender G. IL-10 producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Cin Invest. 2014;124(9):3725-3740. DOI: 10.1172/JCI72308

Koppe MJ, Nagtegaal ID, de Wilt JH, Ceelen WP. Recent insights into the pathophysiology of omental metastases. J Surg Oncol. 2014;110(6):670-675. DOI: 10.1002/jso.23681

Wang F, Vihma V, Soronen J, Turpeinen U, Hämäläinen E, Savolainen-Peltonen H, et al. 17β estradiol and estradiol fatty acyl esters and estrogen-converting enzyme expression in adipose tissue in obese men and women. J Clin Endochrinol Metab. 2013;98(12):4923-4931. DOI: 10.1210/jc.2013-2605

Randolph GJ, Bala S, Rahier F, Johnson MW, Wang PL, Nalbantoglu I, et al. Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in Crohn disease. Am J Pathol. 2016;186(12):3066-3073 DOI: 10.1016/j.ajpath.2016.07.026

Weidenger C, Ziegler J, Letizia M, Schmidt F, Siegmund B. Adipokines and the role in intestinal inflammation. Front Immunol. 2018;9:1974-1978. DOI: 10.3389/fimmu.2018.01974

Fedorenko A, Lishko P, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400-413. DOI: 10.1016/j.cell.2012.09.010

Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Ferno J, Nogueiras R, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2016;232(2):351-362. DOI: 10.1530/JOE-16-0425

Berbée JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 2015;6:6356. DOI: 10.1038/ncomms7356

Vaughan C, Bartness TJ. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1049-R-1058. DOI: 10.1152/ajpregu.00640.2011

Ryu V, Garretson J, Liu Y, Vaughan CH, Bartness TJ. Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci. 2015;35(5):2181-2190. DOI: 10.1523/JNEUROSCI.3306-14.2015

Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am Physiol Endorcinol Metab 2007;293:E444-E-452.

Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, et al. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 2016;23:454-466.

Long J, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell. 2016;166(2):424-435. DOI: 10.1016/j.cell.2016.05.071

Min SY, Kady J, Nam M, Rojas-Rodríguez R, Berkenwald A, Kim JH, et al. Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 2016;22(3):312-318. DOI: 10.1038/nm.4031

Lee MW, Odegaard J, Mukundau L, Qiu Y, Molofsky AB, Nussbaum JC, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160(0):74-87. DOI: 10.1016/j.cell.2014.12.011

Berry D, Jiang Y, Arpke R, Close EL, Uchida A, Reading D, et al. Cellular aging contributes to failure of cold induced beige adipocyte formation in old mice and humans. Cell Metab. 2017;25(1):166-181. DOI: 10.1016/j.cmet.2016.10.023

Qiu Y, Nguyen K, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292-1308. DOI: 10.1016/j.cell.2014.03.066

Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, et al. A creatine-drivers substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643-655. DOI: 10.1016/j.cell.2015.09.035

Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075-1088. DOI: 10.1007/s00125-016-3933-4

Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177-185. DOI: 10.1038/nature21363

Kim BS, Tilstam PV, Springeberg-Jung K, Boecker AH, Schmitz C, Heinrichs D, et al. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds. Peer J. 2017;5:e 2824. DOI: 10.7717/peerj.2824

Ejarque M, Caperuelo-Mallafré V, Serena C, Maymo-Masip E, Durán X, Díaz-Ramos A, et al. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation in adipose-derived stem cells. Int J Obesity. 2018;43:1256-1268. DOI: 10.1038/s41366-018-0219-6

Vega-Robledo GB. Inmunología básica y su correlación clínica. México: Editorial Médica Panamericana; 2014.

Bourlier V, Sengenes C, Zakaroff-Girard A, Decaunes P, Wdziekonski B, Galitzky J, et al. TGF-beta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages. PLoS One. 2012;7(2):e31274. DOI: 10.1371/journal.pone.0031274

Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells. 2010;28(11):2065-2072. DOI: 10.1002/stem.523

Wu D, Molofaky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243-247. DOI: 10.1126/science.1201475

Travers RL, Motta AC, Betts JA, Bouloumié A3, Thompson D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes (Lond). 2015;39(5):762-769. DOI: 10.1038/ijo.2014.195

Yu XH, Fu YC, Zhang DW, Yin K, Tang CK, et al. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245-252. DOI: 10.1016/j.cca.2013.06.006

Cautivo K, Molofasky AB. Regulation of metabolic health and adipose tissue function by group2 innate lymphoid cells. Eur J Immunol. 2016;46(6):1315-1325. DOI: 10.1002/eji.201545562

Becker M, Levings MK, Daniel C. Adipose-tissue regulatory T cells: critical player in adipose-immune crosstalk. Eur J Immunol. 2017;47(11):1867-1874. DOI: 10.1002/eji.201646739

Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector cell contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914-920. DOI: 10.1038/nm.1964

Lynch L, Michelet X, Zhang S, et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T (reg) cells and macrophages in adipose tissue. Nat Immunol. 2015;16(1):85-95. DOI: 10.1038/ni.3047

Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin and resistin. Clin Chem. 2004;50(9):1511-1525. DOI: 10.1373/clinchem.2004.032482

Vera F, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, González-Gay MA, et al. Obesity, fat mass and immune system: role for leptin. Front Physiol. 2018;9:640. DOI: 10.3389/fphys.2018.00640

Sinha G. Leptin therapy gains FDA approval. Nat Biotechnol. 2014;32(4):300-302. DOI: 10.1038/nbt0414-300b

Sun Z, Dragon S, Becker A, Gounni AS, Gounni AS. Leptin inhibits neutrophil apoptosis in children via ERK/NFkB dependent pathways. PLoS One. 2013;8(1):e55249. DOI: 10.1371/journal.pone.0055249

Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Laussane). 2013;4:72-77. DOI: 10.3389/fendo.2013.00071

Williams LM. Hypothalamic dysfunction in obesity. Proc Nutr Soc. 2012;71(4):521-533. DOI: 10.1017/S002966511200078X

Wolf AM, Wolf C, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1Ra in human leukocytes. Biochem Biophys Res Commun. 2004;323(2):630-635. DOI: 10.1016/j.bbrc.2004.08.145

Hara K, Yamauchi T, Imai Y, Manabe I, Nagai R, Kadowaki T, et al. Reduced adiponectin levels is associated with severity of coronary artery disease. Int Heart J. 2007;48(2):149-153. DOI: 10.1536/ihj.48.149

Holguín F, Rojas M, Brown LA, Fitzpatrick AM. Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls. J Asthma. 2011;48(3):217-223. DOI: 10.3109/02770903.2011.555033

Beltowski J. Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity. Med Sci Monit. 2006;12(6):112-119.

Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008;15(18):1851-1862. DOI: 10.2174/092986708785133004

Kim JD, Kang Y, Kim J, Papangeli I, Kang H, Wu J, et al. Essential role of apelin signaling during lymphatic development in zebrafish. Arterioscler Thromb Vasc Biol. 2014;34(2):338-345. DOI: 10.1161/atvbaha.113.302785

Hang S, Wang G, Quiu S, Wang HQ, Gómez G, Englander EW, et al. Increased colonic apelin production in rodents with experimental colitis and in human with IBD. Regul Pept. 2007;142(3):131-137. DOI: 10.1016/j.regpep.2007.02.002

Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, et al. Adipokine apelin ameliorates chronic colitis in IL-10(-/-) mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 2018;148:2012-212. DOI: 10.1016/j.bcp.2018.01.011

Bing C, Mracek T, Gao D, Trayhurn P. Zinc-α2-glycoprotein: an adipokine modulator of body fat mass? Int J Obes (Lond). 2010;34(11):1559-1565. DOI: 10.1038/ijo.2010.105

Wang Y, Li Y, Zhang S, Zhao JY, Liu CY. Adipokine zinc-alpha-2-glycoprotein as a novel urinary biomarker presents earlier than microalbuminuria in diabetic nephropathy. J Int Med Res. 2016;44(2):278-286. DOI: 10.1177/0300060515601699

Hotamisligil GS, Bernlohr DA. Metabolic function of FABP-mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11(10):592-605. DOI: 10.1038/nrendo.2015.122

Li Y, Xiao R, Li CP, Huangfu J, Mao JF. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med Sci Monit. 2015;21:426-431. DOI: 10.12659/MSM.892431

Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol. 2014;8(Suppl 3):23-33. DOI: 10.4137/CMC.S17067

Kajimura S. Adipose tissue in 2016: Advances in the understanding of adipose tissue biology. Nat Rev Endocrinol. 2017;13(2):69-70. DOI: 10.1038/nrendo.2016.211

Wang GX, Zhaoo XY, Meng ZX, Kern M, Dietrich A, Chen Z, et al. The Brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuating hepatic lipogenesis. Nat Med. 2014;20(12):1436-1443. DOI: 10.1038/nm.3713

Hansen MJ, Broeders E, Samms RJ, Vosselman MJ, Van der-Lans A, Adams AC, et al. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep. 2015;5:10275-1082. Disponible en: https://www.nature.com/articles/srep10275

Lombardi A, Senese R, De Matteis R, Busiello RA, Cioffi F, Goglia F, et al. 3,5-diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS One. 2015;10(2):e0116498. DOI: 10.1371/journal.pone.0116498

Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305(5):E567-E572. DOI: 10.1152/ajpendo.00250.2013




DOI: http://dx.doi.org/10.29262/ram.v66i3.589

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.