Conceptos generales de las Inmunodeficiencias Humorales

Maria Guadalupe Velásquez-Ortiz, Patricia O'Farril-Romanillos, Nora Hilda Segura-Méndez, Laura Berrón Ruiz

Resumen


Las inmunodeficiencias humorales (IDH) comprenden a un grupo de enfermedades caracterizadas por la imposibilidad de desarrollar una respuesta inmune efectiva mediada por inmunoglobulinas (Igs). Los pacientes con IDH presentan infecciones por bacterias extracelulares capsuladas, principalmente en el tracto respiratorio y/o gastrointestinal, y una mayor predisposición a padecer enfermedades autoinmunes y cáncer. Algunas se originan por defectos genéticos bien definidos y en otras la causa es desconocida. Las manifestaciones clínicas de algunas IDH pueden ser tardías y el diagnóstico se apoya con pruebas de laboratorio como la concentración en suero de las Igs, determinación de poblaciones linfocitarias y estudios funcionales. El tratamiento de reemplazo con gammaglobulinas disminuye significativamente infecciones graves. Para lograr un diagnóstico temprano es necesario mantener un índice de sospecha alto y evaluar las manifestaciones clínicas y de laboratorio sugestivas de IDH. Las tecnologías de secuenciación masiva han favorecido la descripción de en mutaciones en varios genes que llevan a un fenotipo clínico de IDH;  con lo que se abre el camino para comprender mejor las inmunopatologías en las IDH.

 


Palabras clave


Inmunodeficiencias humorales; criterios diagnósticos; errores innatos humanos de la inmunidad

Referencias


Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of clinical immunology. 2020;40(1):66-81.

McCusker C, Upton J, Warrington R. Primary immunodeficiency. Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology. 2018;14(Suppl 2):61.

Raje N, Dinakar C. Overview of Immunodeficiency Disorders. Immunology and allergy clinics of North America. 2015;35(4):599-623.

Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. Journal of clinical immunology. 2018;38(1):129-43.

Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. Journal of clinical immunology. 2018;38(1):96-128.

Notarangelo LD. Primary immunodeficiencies. The Journal of allergy and clinical immunology. 2010;125(2 Suppl 2):S182-94.

Cooper MD, Lanier LL, Conley ME, Puck JM. Immunodeficiency disorders. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2003:314-30.

Westh L, Mogensen TH, Dalgaard LS, Bernth Jensen JM, Katzenstein T, Hansen AE, et al. Identification and Characterization of a Nationwide Danish Adult Common Variable Immunodeficiency Cohort. Scandinavian journal of immunology. 2017;85(6):450-61.

Subbarayan A, Colarusso G, Hughes SM, Gennery AR, Slatter M, Cant AJ, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics. 2011;127(5):810-6.

Fried AJ, Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clinical microbiology reviews. 2009;22(3):396-414.

Garcia-Prat M, Vila-Pijoan G, Martos Gutierrez S, Gala Yerga G, Garcia Guantes E, Martinez-Gallo M, et al. Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite() automated turbidimetric analyzer. Journal of clinical laboratory analysis. 2018;32(6):e22420.

Berron-Ruiz L, Lopez-Herrera G, Avalos-Martinez CE, Valenzuela-Ponce C, Ramirez-SanJuan E, Santoyo-Sanchez G, et al. Variations of B cell subpopulations in peripheral blood of healthy Mexican population according to age: Relevance for diagnosis of primary immunodeficiencies. Allergologia et immunopathologia. 2016;44(6):571-9.

Garcia-Prat M, Alvarez-Sierra D, Aguilo-Cucurull A, Salgado-Perandres S, Briongos-Sebastian S, Franco-Jarava C, et al. Extended immunophenotyping reference values in a healthy pediatric population. Cytometry Part B, Clinical cytometry. 2019;96(3):223-33.

Marsh RA, Orange JS. Antibody deficiency testing for primary immunodeficiency: A practical review for the clinician. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2019;123(5):444-53.

Parker AR, Skold M, Ramsden DB, Ocejo-Vinyals JG, Lopez-Hoyos M, Harding S. The Clinical Utility of Measuring IgG Subclass Immunoglobulins During Immunological Investigation for Suspected Primary Antibody Deficiencies. Laboratory medicine. 2017;48(4):314-25.

Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. The Journal of allergy and clinical immunology. 2015;136(5):1186-205 e1-78.

Notarangelo LD, Lanzi G, Peron S, Durandy A. Defects of class-switch recombination. The Journal of allergy and clinical immunology. 2006;117(4):855-64.

Piatosa B, Wolska-Kusnierz B, Pac M, Siewiera K, Galkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry Part B, Clinical cytometry. 2010;78(6):372-81.

Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. Journal of clinical immunology. 2015;35(8):696-726.

Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of kappa-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. The Journal of allergy and clinical immunology. 2011;128(1):223-5 e2.

van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ.

Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. The Journal of experimental medicine. 2007;204(3):645-55.

El-Sayed ZA, Radwan N. Newborn Screening for Primary Immunodeficiencies: The Gaps, Challenges, and Outlook for Developing Countries. Frontiers in immunology. 2019;10:2987.

Suri D, Rawat A, Singh S. X-linked Agammaglobulinemia. Indian journal of pediatrics. 2016;83(4):331-7.

Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine. 2006;85(4):193-202.

Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722-8.

Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279-90.

Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226-33.

Dogruel D, Serbes M, Sasihuseyinoglu AS, Yilmaz M, Altintas DU, Bisgin A. Clinical and genetic profiles of patients with X-linked agammaglobulinemia from southeast Turkey: Novel mutations in BTK gene. Allergologia et immunopathologia. 2019;47(1):24-31.

Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunological reviews. 2000;178:75-90.

Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine. 1996;75(6):287-99.

Takada H, Kanegane H, Nomura A, Yamamoto K, Ihara K, Takahashi Y, et al. Female agammaglobulinemia due to the Bruton tyrosine kinase deficiency caused by extremely skewed X-chromosome inactivation. Blood. 2004;103(1):185-7.

Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clinical immunology. 2002;104(3):221-30.

Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. The Journal of allergy and clinical immunology. 2017;140(4):1191-4 e4.

Aadam Z, Kechout N, Barakat A, Chan KW, Ben-Ali M, Ben-Mustapha I, et al. X-Linked Agammagobulinemia in a Large Series of North African Patients: Frequency, Clinical Features and Novel BTK Mutations. Journal of clinical immunology. 2016;36(3):187-94.

El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA):Phenotype, diagnosis, and therapeutic challenges around the world. The World Allergy Organization journal. 2019;12(3):100018.

Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. The Journal of allergy and clinical immunology. 2008;122(1):210-2.

Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Progress in hematology. 1956;1:318-29.

Rutkowska M, Lenart M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The number of circulating CD4+ CD25high Foxp3+ T lymphocytes is transiently elevated in the early childhood of transient hypogammaglobulinemia of infancy patients. Clinical immunology. 2011;140(3):307-10.

Ricci G, Piccinno V, Giannetti A, Miniaci A, Specchia F, Masi M. Evolution of hypogammaglobulinemia in premature and full-term infants. International journal of immunopathology and pharmacology. 2011;24(3):721-6.

Rutkowska M, Trzyna E, Lenart M, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The elevated number of circulating regulatory T cells in patients with transient hypogammaglobulinemia of infancy is not associated with any abnormalities in the genes encoding the TGF-beta receptors. Clinical immunology. 2013;149(1):83-5.

Cunningham-Rundles C, Fotino M, Rosina O, Peter JB. Selective IgA deficiency, IgG subclass deficiency, and the major histocompatibility complex. Clinical immunology and immunopathology. 1991;61(2 Pt 2):S61-9.

Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clinical and experimental immunology. 2000;120(2):225-31.

Wang Z, Yunis D, Irigoyen M, Kitchens B, Bottaro A, Alt FW, et al. Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clinical immunology. 1999;91(3):263-70.

Suzuki H, Kaneko H, Fukao T, Jin R, Kawamoto N, Asano T, et al. Various expression patterns of alpha1 and alpha2 genes in IgA deficiency. Allergology international : official journal of the Japanese Society of Allergology. 2009;58(1):111-7.

Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nature genetics. 2005;37(8):829-34.

Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, Pan-Hammarstrom Q, Kaartinen T, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes and immunity. 2009;10(2):151-61.

Edwards E, Razvi S, Cunningham-Rundles C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clinical immunology. 2004;111(1):93-7.

Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clinical and experimental immunology. 1981;45(2):299-304.

Aghamohammadi A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. Journal of clinical immunology. 2009;29(1):130-6.

Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(7):1981-6.

Janzi M, Kull I, Sjoberg R, Wan J, Melen E, Bayat N, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clinical immunology. 2009;133(1):78-85.

Zinneman HH, Kaplan AP. The association of giardiasis with reduced intestinal secretory immunoglobulin A. The American journal of digestive diseases. 1972;17(9):793-7.

Cunningham-Rundles C. Physiology of IgA and IgA deficiency. Journal of clinical immunology. 2001;21(5):303-9.

Sherkat R, Shoaei P, Parvaneh N, Babak A, Kassaian N. Selective antibody deficiency and its relation to the IgG2 and IgG3 subclass titers in recurrent respiratory infections. Iranian journal of immunology : IJI. 2013;10(1):55-60.

Janssen LMA, Macken T, Creemers MCW, Pruijt JFM, Eijk JJJ, de Vries E. Truly selective primary IgM deficiency is probably very rare. Clinical and experimental immunology. 2018;191(2):203-11.

Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM Syndrome: a Report from the USIDNET Registry. Journal of clinical immunology. 2016;36(5):490-501.

Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990-3.

Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72(2):291-300.

Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565-75.

Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(22):12614-9.

Imai K, Catalan N, Plebani A, Marodi L, Sanal O, Kumaki S, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. The Journal of clinical investigation. 2003;112(1):136-42.

Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nature immunology. 2001;2(3):223-8.

Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, et al. Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. The Journal of clinical investigation. 1998;102(4):853-60.

Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. The Journal of clinical investigation. 1999;103(8):1151-8.

Lougaris V, Lanzi G, Baronio M, Gazzurelli L, Vairo D, Lorenzini T, et al. Progressive severe B cell and NK cell deficiency with T cell senescence in adult CD40L deficiency. Clinical immunology. 2018;190:11-4.

Cabral-Marques O, Klaver S, Schimke LF, Ascendino EH, Khan TA, Pereira PV, et al. First report of the Hyper-IgM syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. Journal of clinical immunology. 2014;34(2):146-56.

de Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F. CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. European journal of immunology. 1999;29(1):367-73.

Cabral-Marques O, Franca TT, Al-Sbiei A, Schimke LF, Khan TA, Feriotti C, et al. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-gamma. The Journal of allergy and clinical immunology. 2018;142(5):1571-88 e9.

Ferrua F, Galimberti S, Courteille V, Slatter MA, Booth C, Moshous D, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: Results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. The Journal of allergy and clinical immunology. 2019;143(6):2238-53.

Janeway CA, Apt L, Gitlin D. Agammaglobulinemia. Trans Assoc Am Physicians. 1953;66:200-2.

Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clinical immunology. 1999;92(1):34-48.

Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? Journal of medical genetics. 2016;53(9):575-90.

Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergology international : official journal of the Japanese Society of Allergology. 2018;67(1):43-54.

Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77-85.

Park MA, Li JT, Hagan JB, Maddox DE, Abraham RS. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372(9637):489-502.

Horn J, Thon V, Bartonkova D, Salzer U, Warnatz K, Schlesier M, et al. Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workup and therapeutic strategy. Clinical immunology. 2007;122(2):156-62.

Venhoff N, Emmerich F, Neagu M, Salzer U, Koehn C, Driever S, et al. The role of HLA DQ2 and DQ8 in dissecting celiac-like disease in common variable immunodeficiency. Journal of clinical immunology. 2013;33(5):909-16.

Yong PF, Thaventhiran JE, Grimbacher B. "A rose is a rose is a rose," but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol. 2011;111:47-107.

Albin S, Cunningham-Rundles C. An update on the use of immunoglobulin for the treatment of immunodeficiency disorders. Immunotherapy. 2014;6(10):1113-26.

Gernez Y, Baker MG, Maglione PJ. Humoral immunodeficiencies: conferred risk of infections and benefits of immunoglobulin replacement therapy. Transfusion. 2018;58 Suppl 3:3056-64.

Papadopoulou-Alataki E, Hassan A, Davies EG. Prevention of infection in children and adolescents with primary immunodeficiency disorders. Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand. 2012;30(4):249-58.

Rudilla F, Franco-Jarava C, Martinez-Gallo M, Garcia-Prat M, Martin-Nalda A, Riviere J, et al. Expanding the Clinical and Genetic Spectra of Primary Immunodeficiency-Related Disorders With Clinical Exome Sequencing: Expected and Unexpected Findings. Frontiers in immunology. 2019;10:2325.

Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Frontiers in immunology. 2017;8:847.




DOI: http://dx.doi.org/10.29262/ram.v67i1.763

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.