Inmunopatología de la enfermedad pulmonar obstructiva crónica
PubMed (Inglés)

Palabras clave

Enfermedad pulmonar obstructiva crónica
Inflamación

Resumen

La enfermedad pulmonar obstructiva crónica (EPOC) es una enfermedad común, prevenible y tratable que presenta una fisiopatología compleja y un proceso inmunopatológico aún más complicado. El objetivo de esta revisión fue analizar los aspectos inmunopatológicos de la EPOC, para lo cual se llevó a una cabo una pesquisa bibliográfica de los documentos más relevantes indexados en la base de datos PubMed durante los últimos 10 años. Diversos aspectos pudieron concluirse: en la inmunopatología de la EPOC existen cambios inflamatorios, inmunológicos y no inmunológicos con un desequilibrio en el estrés oxidativo, así como alteraciones en la relación proteasas/antiproteasas debidas a efectos genéticos, epigenéticos, ambientales directos e indirectos. La EPOC produce daño tisular irreversible e inflamación crónica con alteración de la reparación tisular que induce obstrucción crónica de la vía aérea, bronquitis, enfisema y daño sistémico. Las comorbilidades resultantes más comunes son enfermedad cardiovascular, síndrome metabólico, osteoporosis, depresión, disfunción músculo esquelética, incremento de la edad biológica, cáncer pulmonar y otros tipos de neoplasias. En la concepción de la EPOC es indispensable reconocer que es una enfermedad no transmisible y prevenible.

PubMed (Inglés)

Referencias

Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (Update 2016). Global Initiative for Chronic Obstructive Lung Disease; 2016.

Sansores RH, Ramírez-Venegas A, Acuña KM, Arango RAA, Argote-Greene LM, Cante FEV, et al. Guías para el diagnóstico y tratamiento de la enfermedad pulmonar obstructiva crónica. Derivadas del cuarto consenso mexicano para el diagnóstico y tratamiento de la EPOC. Neumol Cir Torax. 2012;71(Supl 1):8-89. Disponible en: http://www.medigraphic.com/pdfs/neumo/nt-2012/nts121a.pdf

Burgel PR. From COPD definitions to COPD phenotypes. Presse Med. 2014;43(12 Pt 1):1337-1343. DOI: http://dx.doi.org/10.1016/j.lpm.2014.09.004

Turner AM, Tamasi L, Schleich F, Hoxha M, Horvath I, Louis R, et al. Clinically relevant subgroups in COPD and asthma. Eur Respir Rev. 2015;24(136):283-298. DOI: http://dx.doi.org/10.1183/16000617.00009014

Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(3):228-237. DOI: http://dx.doi.org/10.1164/rccm.201210-1843CI

Cai BQ, Cai SX, Chen RC, Cui LY, Feng YL, Gu YT, et al. Expert consensus on acute exacerbation of chronic obstructive pulmonary disease in the People’s Republic of China. Int J Chron Obstruct Pulmon Dis. 2014;9(1):381-395. DOI: http://dx.doi.org/10.2147/COPD.S58454

Zhang P, Dong G, Sun B, Zhang L, Chen X, Ma N, et al. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One. 2011;6(6):e20827. DOI: http://dx.doi.org/10.1371/journal.pone.0020827

Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, et al. An official American Thoracic Society/European Respiratory Society statement: Update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15-e62. DOI: http://dx.doi.org/10.1164/rccm.201402-0373ST

Fischer BM, Voynow JA, Ghio AJ. COPD: Balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10(1):261-276. DOI: http://dx.doi.org/10.2147/COPD.S42414

Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9(1):397-412. DOI: http://dx.doi.org/10.2147/COPD.S42544

Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233-2247. DOI: http://dx.doi.org/10.1056/NEJMra0910061

Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA.The presence of chronic mucus hypersecretion across adult life in relation to chronic obstructive pulmonary disease development. Am J Respir Crit Care Med. 2016;193(6):662-672. DOI: http://dx.doi.org/10.1164/rccm.201511-2210OC

Snider GL, Kleinerman J, Thurlbeck WM, Bengali ZH. The definition of emphysema: Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis. 1985;132(1):182-185. DOI: http://dx.doi.org/10.1164/arrd.1985.132.1.182

MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):258-266. DOI: http://dx.doi.org/10.1513/pats.200504-045SR

Martin C, Frija J, Burgel PR. Dysfunctional lung anatomy and small airways degeneration in COPD. Int J Chron Obstruct Pulmon Dis. 2013;8:7-13. DOI: http://dx.doi.org/10.2147/COPD.S28290.

Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis. 2015;10(1):995-1013. DOI: http://dx.doi.org/10.2147/COPD.S82518

Rice MB, Ljungman PL, Wilker EH, Dorans KS, Gold DR, Schwartz J, et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med. 2015;191(6):656-664. DOI: http://dx.doi.org/10.1164/rccm.201410-1875OC

Garland AJ, Doshi A, Turcanu V. Neural respiratory drive measurement for COPD assessment and monitoring. Pneumologia. 2015;64(1):14-7.

Degens H, Gayan-Ramirez G, Van-Hees HW. Smoking-induced skeletal muscle dysfunction: From evidence to mechanisms. Am J Respir Crit Care Med. 2015;191(6):620-625. DOI: http://dx.doi.org/10.1164/rccm.201410-1830PP

Takahashi T, Kubo H. The role of microparticles in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9(1):303-314. DOI: http://dx.doi.org/10.2147/COPD.S38931

Van-Der-Merwe R, Molfino NA. Challenge models to assess new therapies in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2012;7:597-605. DOI: http://dx.doi.org/10.2147/COPD.S30664

Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules. 2015;5(3):1266-1283. DOI: http://dx.doi.org/10.3390/biom5031266

Khawar B, Abbasi MH and Nadeem Sheikh N. A panoramic spectrum of complex interplay between the immune system and IL-32 during pathogenesis of various systemic infections and inflammation. Eur J Med Res. 2015;20(1):7. DOI: http://dx.doi.org/10.1186/s40001-015-0083-y

Martin C, Frija J, Burgel PR. Dysfunctional lung anatomy and small airways degeneration in COPD. Int J Chron Obstruct Pulmon Dis. 2013;8:7-13.

Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41(1):21-35. DOI: http://dx.doi.org/10.1016/j.immuni.2014.06.013

Gordon S, Plüddemann A, Martinez-Estrada F. Macrophage heterogeneity in tissues: Phenotypic diversity and functions. Immunol Rev. 2014;262(1):36-55. DOI: http://dx.doi.org/10.1111/imr.12223

Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16-27. DOI: http://dx.doi.org/10.1016/j.jaci.2016.05.011

Gasiuniene E, Lavinskiene S, Sakalauskas R, Sitkauskiene B. Levels of IL-32 in serum, induced sputum supernatant, and bronchial lavage fluid of patients with chronic obstructive pulmonary disease. COPD. 2016;13(5):569-575. DOI: http://dx.doi.org/10.3109/15412555.2016.1145201

McAleer JP, Kolls JK. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev. 2014;260(1):129-144. DOI: http://dx.doi.org/10.1111/imr.12183

Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355-2365. DOI: http://dx.doi.org/10.1056/NEJMra0800353

Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645-2653. DOI: http://dx.doi.org/10.1056/NEJMoa032158

Hodge G, Jersmann H, Tran HB, Holmes M, Reynolds PN, Hodge S. Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes. Respir Res. 2015;16(1):2. DOI: http://dx.doi.org/10.1186/s12931-014-0161-7

Cosío MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2396-2454. DOI: http://dx.doi.org/10.1056/NEJMra0804752

Saetta M, Di-Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(3 Pt 1):822-826. DOI: http://dx.doi.org/10.1164/ajrccm.157.3.9709027

Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: Where do we stand. Mediators Inflamm. 2013. DOI: http://dx.doi.org/10.1155/2013/413735

Hodge G, Holmes M, Jersmann H, Reynolds PN, Hodge S. The drug efflux pump Pgp1 in pro-inflammatory lymphocytes is a target for novel treatment strategies in COPD. Respir Res. 2013;14(1):63. DOI: http://dx.doi.org/10.1186/1465-9921-14-63

Gwilt CR, Donnelly LE, Rogers DF. The non-neuronal cholinergic system in the airways: An unappreciated regulatory role in pulmonary inflammation. Pharmacol Ther. 2007;115(2):208-222. DOI: http://dx.doi.org/10.1016/j.pharmthera.2007.05.007

Kistemaker LE, Oenema TA, Meurs H, Gosens R. Regulation of airway inflammation and remodeling by muscarinic receptors: Perspectives on anticholinergic therapy in asthma and COPD. Life Sci. 2012;91(21-22):1126-1133. DOI: http://dx.doi.org/10.1016/j.lfs.2012.02.021

Profita M, Albano GD, Riccobono L, Di-Sano C, Montalbano AM, Gagliardo R, et al. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology. 2014;219(5):392-401. DOI: http://dx.doi.org/10.1016/j.imbio.2014.01.00

Litsiou E, Semitekolou M, Galani IE, Morianos I, Tsoutsa A, Kara P, et al. CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(11):1194-1202. DOI: http://dx.doi.org/10.1164/rccm.201208-1543OC

Bracke KR, Verhamme FM, Seys LJ, et al. Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(3):343-355. DOI: http://dx.doi.org/10.1164/rccm.201211-2055OC

Brusselle GG, Demoor T, Bracke KR, Brandsma CA, Timens W. Lymphoid follicles in (very) severe COPD: Beneficial or harmful. Eur Respir J. 2009;34(1):219-230. DOI: http://dx.doi.org/10.1183/09031936.00150208

Van-Der-Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M, et al. Cigarette smoke-induced emphysema: a role for the B cell. Am J Respir Crit Care Med. 2006;173(7):751-758. DOI: http://dx.doi.org/10.1164/rccm.200504-594OC

Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567-569. DOI: http://dx.doi.org/10.1038/nm1583

Núñez B, Sauleda J, Antó JM, Julià MR, Orozco M, Monsó E, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(8):1025-1031. DOI: http://dx.doi.org/10.1164/rccm.201001-0029OC

Greene CM, Low TB, O’Neill SJ, McElvaney NG. Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med. 2010;181(1):31-35. DOI: http://dx.doi.org/10.1164/rccm.200904-0545OC

Wood AM, De-Pablo P, Buckley CD, Ahmad A, Stockley RA. Smoke exposure as a determinant of autoantibody titre in α1-antitrypsin deficiency and COPD. Eur Respir J. 2011;37(1):32-38. DOI: http://dx.doi.org/10.1183/09031936.00033710

Rinaldi M, Lehouck A, Heulens N, Lavend’homme R, Carlier V, Saint-Remy JM. Antielastin B-cell and T-cell immunity in patients with chronic obstructive pulmonary disease. Thorax. 2012;67(8):694-700. DOI: http://dx.doi.org/10.1136/thoraxjnl-2011-200690

Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008,177(2):156-163. DOI: http://dx.doi.org/10.1164/rccm.200701-014OC

Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: A jack of all trades, master of regulation. Nat Immunol. 2008;9(3):239-244. DOI: http://dx.doi.org/10.1038/ni1572

Chu S, Zhong X, Zhang J, Lai X, Xie J, Li Y. Four SNPs and systemic level of FOXP3 in smokers and patients with chronic obstructive pulmonary disease. COPD. 2016;13(6):760-766. DOI: http://dx.doi.org/10.1080/15412555.2016.1192112

Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):848-898. DOI: http://dx.doi.org/10.1056/NEJMra0707449

Stoll P, Ulrich M, Bratke K, Garbe K, Virchow JC, Lommatzsch M. Imbalance of dendritic cell co-stimulation in COPD. Respir Res. 2015;16(1):19. DOI: http://dx.doi.org/10.1186/s12931-015-0174-x

Liao SX, Ding T, Rao XM, Sun PP, Wang YJ, Fu DD, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11(1):219-225. DOI: http://dx.doi.org/10.3892/mmr.2014.2759

Tsoumakidou M, Demedts IK, Brusselle GG, Jeffery PK. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am J Respir Crit Care Med. 2008;177(11):1180-1186. DOI: http://dx.doi.org/10.1164/rccm.200711-1727PP

Fernandes FL. Eosinophils in COPD: why should I care. J Bras Pneumol. 2016;42(4):237-238. DOI: http://dx.doi.org/10.1590/S1806-37562016000400001

Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016;17(6):626-635. DOI: http://dx.doi.org/10.1038/ni.3443

Rossel A, Monsó E, Soler N, Torres F, Angrill J, Riise G. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med. 2005;165(8):891-897. DOI: http://dx.doi.org/10.1001/archinte.165.8.891

Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med. 2011;183(6):734-742. DOI: http://dx.doi.org/10.1164/rccm.201006-0833OC

Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7(2):131-137. DOI: http://dx.doi.org/10.1038/ni1303

Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675-680. DOI: http://dx.doi.org/10.1038/90609

Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216. DOI: http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. DOI: http://dx.doi.org/10.1016/j.cell.2006.02.015

Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3-9. DOI: http://dx.doi.org/10.1016/j.smim.2003.10.003

Akira S. Mammalian Toll-like receptors. Curr Opin Immunol. 2003;15(1):5-11. DOI: http://dx.doi.org/10.1016/S0952-7915(02)00013-4

Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll- like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554-561. DOI: http://dx.doi.org/10.4049/jimmunol.168.2.554

Foley NM, Wang J, Redmond HP, Wang JH. Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res. 2015;2:1. DOI: http://dx.doi.org/10.1186/s40779-014-0029-7

Kisseleva EP. Innate immunity underlies symbiotic relationships. Biochemistry (Mosc). 2014;79(12):1273-1285. DOI: http://dx.doi.org/10.1134/S0006297914120013

Bozza S, Zelante T, Moretti S, Bonifazi P, DeLuca A, D’Angelo C, et al. Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection. J Immunol. 2008;180(6):4022-4031. DOI: http://dx.doi.org/10.4049/jimmunol.180.6.4022

Di Stefano A, Caramori G, Barczyk A, Vicari C, Brun P, Zanini A, et al. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax. 2014;69(6):516-524. DOI: http://dx.doi.org/10.1136/thoraxjnl-2012-203062

Van-Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, et al. Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol. 2012;303(9):L814-L823. DOI: http://dx.doi.org/10.1152/ajplung.00128.2012

Keller IE, Vosyka O, Takenaka S, Kloß A, Dahlmann B, Willems LI, et al. Regulation of immunoproteasome function in the lung. Sci Rep. 2015;5:10230. DOI: http://dx.doi.org/10.1038/srep10230

Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S33-S38. DOI: http://dx.doi.org/10.1093/gerona/glu049

Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015;6:1085. DOI: http://dx.doi.org/10.3389/fmicb.2015.01085

Rutten EP, Gopal P, Wouters EF, Franssen FM, Hageman GJ, Vanfleteren LE, et al. Various mechanistic pathways representing the aging process are altered in COPD. Chest. 2016;149(1):53-61. DOI: http://dx.doi.org/10.1378/chest.15-0645

Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: New molecular insights. Respiration. 2011;81(4):265-284. DOI: http://dx.doi.org/10.1159/000324601

Instituto Nacional del Cáncer. [Sitio web]. Naturaleza del Cáncer. 2017. Actualizado: 2017 Mar 22. Disponible en: https://www.cancer.gov/espanol/cancer/naturaleza/estadisticas

Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 2016;35(1):182. DOI: http://dx.doi.org/10.1186/s13046-016-0461-5

Nakamaru Y, Vuppusetty C, Wada H, Milne JC, Ito M, Rossios C, et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J. 2009;23(9):2810-2819. DOI: http://dx.doi.org/10.1096/fj.08-125468

Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, et al. Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget. 2016;7(26):40377-40386. DOI: http://dx.doi.org/10.18632/oncotarget.9750

Dai J, Yang P, Cox A, Jiang G. Lung cancer and chronic obstructive pulmonary disease: From a clinical perspective. Oncotarget. 2017;8(11):18513-18524. DOI: http://dx.doi.org/10.18632/oncotarget.14505

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2017 Revista Alergia México

Descargas

##plugins.themes.healthSciences.displayStats.noStats##