Resumen
La microbiota humana es el conjunto de microorganismos que residen en nuestro cuerpo. Su composición filogenética está relacionada con el riesgo de padecer enfermedades inflamatorias y cuadros alérgicos. Los humanos interaccionamos con una gran cantidad y variedad de estos microorganismos a través de la piel y las mucosas. Un mecanismo de protección inmunológica es la producción de la IgA secretora (IgAS), que reconoce los microorganismos patógenos residentes y evita su interacción con las células epiteliales del hospedero mediante la exclusión inmunológica. Se creía que la única función de la IgAS en las mucosas era reconocer y excluir a los patógenos, pero gracias a la secuenciación masiva para la caracterización filogenética de la microbiota humana ahora sabemos que puede estar asociada con microorganismos patógenos y no patógenos, asociación importante para las funciones que la microbiota lleva a cabo en los epitelios: regulación de la capacidad de ciertas especies microbianas para establecerse en la piel y en las mucosas, estimulación y regulación de la respuesta inmunológica, del riesgo de desarrollar problemas inflamatorios, cuadros alérgicos, enfermedades autoinmunes e, incluso, cáncer. La microbiota establecida determina las especies bacterianas (y probablemente también virales y de protozoarios) que residen en la piel y en las mucosas, promoviendo la diversidad microbiana.Referencias
Aguilera-Montilla N, Pérez-Blas M, López-Santalla M, Martín-Villa JM. Mucosal immune system: a brief review. Immunology. 2004;23(2):207-216.
Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977 31:107-133. DOI: 10.1146/annurev.mi.31.100177.000543
Sender R, Fuchs S, Milo R. Revised Estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. DOI: 10.1371/journal.pbio.1002533
Dongarrá M, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, et al. Mucosal immunology and probiotics. Curr Allergy Asthma Rep. 2013;13(1):19-26. DOI: 10.1007/s11882-012-0313-0
Strugnell R, Wijburg O. The role of secretory antibodies in infection immunity. Nat Rev Microbiol. 2010;8(9):656-667. DOI: 10.1038/nrmicro2384
Gugler E, Von-Muralt G. About studies of immunoelectrophoresis in breast milk proteins. Milt Schweiz Med Wochenschr. 1959;89:925-929.
Woof JM, Russell MV. Structure and function relatioships in IgA. Mucosal immunol. 2011;4(6):590-597. DOI: 10.1038/mi.2011.39
Bonner A, Almogren A, Furtado PB, Kerr M, Perkins SJ. The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses. J Biol Chem. 2009;284(8):5077-5087. DOI: 10.1074/jbc.M807529200
Mestecky J, Russell MW. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett. 2009;124(2):57-62. DOI: 10.1016/j.imlet.2009.03.013
Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clon J AM Soc Nephrol. 2016;11(1):137-154. DOI: 10.2215/CJN.09430915
Heineke, M, Von-Egmond M. Immunoglobulin A: magic bullet or Trojan horse? Eur J Clin Invest. 2017;47(2):184-192. DOI: 10.1111/eci.12716
Tsuji M, Suzuki K, Kinoshita K, Fagarasan S. Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin Immunol. 2008;20(1):59-66. DOI: 10.1016/j.smim.2007.12.003
Hoeppli RE, Wu D, Cook L, Levings MK. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol. 2015;6(61):1-14. DOI: 10.3389/fimmu.2015.00061
Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012;12(12):821-832. DOI: 10.1038/nri3322
Kurokasi T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 15(3):149-159. DOI: 10.1038/nri3802
Kaetzel C. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol RV. 2005;206:83-99. DOI: 10.1111/j.0105-2896.2005.00278.x
Zuo T, Feng X, Zhang N, Xue C, Tang Q. Establishment of a functional secretory IgA transcytosis model system in vitro. Appl Microbiol Biotechnol. 2015;99(13):5535-5545. DOI: 10.1007/s00253-015-6501-9
Pilette C, Ouadrhiri Y, Dimanche F, Vaerman JP, Sibille Y. Secretory component is cleaved by neutrophil serine proteinases, but its epithelial production is increased by neutrophils through NFkB and p38 mitogen activated protein kinase-dependent mechanisms. Am J Respir Cell Mol Biol. 2003;28(4):485-498. DOI: 10.1165/rcmb.4913
Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 20081;1(1):11-22. DOI: 10.1038/mi.2007.6
Duerkop B, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009;31(3):368-376. DOI: 10.1016/j.immuni.2009.08.009
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51. DOI: 10.1186/s13073-016-0307-y
Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. DOI: 10.1186/s40168-017-0268-4
Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425-433. DOI: 10.1111/j.1600-0897.2010.00836.x
Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376-1383. DOI: 10.1126/science.aar3318
Rogosch T, Kerzel S, Hoss K, Hoersch G, Zemlin C, Heckmann M, et al. IgA response in preterm neonates shows little evidence of antigen-driven selection. J Immunol. 2012;189(11):5449-5456. DOI: 10.4049/jimmunol.1103347
Bordon Y. Early life immunology: fetal DCs-born to be mild. Nat Rev Immunol. 2017;17(8):465. DOI: 10.1038/nri.2017.79
Kollmann TR, Kampmann B, Mazmanian SK, Marchant A, Levy O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity. 2017;21;46(3):350-363. DOI: 10.1016/j.immuni.2017.03.009
Bordon Y. Microbiota: Baby bugs can’t stop the thugs. Nat Rev Immunol. 2017;17(18):467. DOI: 10.1038/nri.2017.83
Gómez-De-Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296-1302. DOI: 10.1126/science.aad2571
Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28(4):561-568. DOI: 10.1101/gr.233940.117
Deweerdt S. How baby’s first microbes could be crucial to future health? Nature. 2018;555:S18-S19. Disponible en: https://www.nature.com/articles/d41586-018-02480-6
Von-Mutius E. The shape of the microbiome in early life. Nat Med. 2017;23(3):274-275. DOI: 10.1038/nm.4299
Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017;17(8):461-463. DOI: 10.1038/nri.2017.77
Demirjian A, Levy O. Safety and efficacy of neonatal vaccination. Eur J Immunol. 2009;39(1):36-46. DOI: 10.1002/eji.200838620
Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L, et al. Maternal immunisation: collaborating with mother nature. Lancet Infect Dis. 2017;17(7):e197-e208. DOI: 10.1016/S1473-3099(17)30229-3
Bardanzellu F, Fanos V, Reali A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients. 2017;9(8):E843. DOI: 10.3390/nu9080843
Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66:515-522. DOI: 10.1016/j.alit.2017.07.010
Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe. 2017;22(6):809-816. DOI: 10.1016/j.chom.2017.10.013
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez M, Morán P, Rojas L, Portillo T, et al. Human intestinal microbiota: interaction between parasites and the host immune response. Arch Med Res. 2017;48(8):690-700. DOI: 10.1016/j.arcmed.2017.11.015
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. DOI: 10.1038/nm.4517
Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev. 2017;279(1):8-22. DOI: 10.1111/imr.12578
Salazar N, De-Los-Reyes-Gavilán CG. Insights into microbe–microbe interactions in human microbial ecosystems: strategies to be competitive. Front Microbiol. 2016;7:1508. DOI: 10.3389/fmicb.2016.01508
Ferreiro A, Crook N, Gasparrini AJ, Dantas G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell Press. 2018;172(6):1216-1227. DOI: 10.1016/j.cell.2018.02.015
Van-Der-Lelle D, Taghavi S, Henry C, Gilbert JA. The microbiome as a source of new enterprises and job creation: considering clinical faecal and synthetic microbiome transplants and therapeutic regulation. Microb Biotechnol. 2017;10(1):4-5. DOI: 10.1111/1751-7915.12597
Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105. DOI: 10.1111/imr.12563
Relman DA. The human microbiome and the future practice of medicine. JAMA. 2015;314(11):1127-1128. DOI: 10.1001/jama.2015.10700
Cox M, Cookson W, Moffatt M. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013;22(R1):R88-R94. DOI: 10.1093/hmg/ddt398
Rintala A, Pietilä S, Munukka E, Eerola E, Pursiheimo J, Laiho A, et al. Gut microbiota analysis results are highly dependent on the 16 rRNA gene target region, whereas the impact of DNA extraction is minor. J Biomol Tech. 2017;28(1):19-30. DOI: 10.7171/jbt.17-2801-003
Brosius, J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978;75(10):4801-4805.
Roy-Chaudhuri R, Kirthi N, Culver GM. Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity. Proc Natl Acad Sci U S A. 2010;107(10):4567-4572. DOI: 10.1073/pnas.0912305107
Maeda M, Shimada T, Ishihama A. Strength and regulation of seven rRNA promoters in Escherichia coli. PLoS ONE. 2015;10(12):e0144697. DOI: 10.1371/journal.pone.0144697
Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One. 2012;7(4):e35647. DOI: 10.1371/journal.pone.0035647
Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics. 2016;17:135. DOI: 10.1186/s12859-016-0992-y
Rusk N. Torrents of sequence. Nature Methods. 2011;8(44). DOI: 10.1038/nmeth.f.330
Pennisi E. Semiconductors inspire new sequencing technologies. Science. 2010;327(5970):1190. DOI: 10.1126/science.327.5970.1190
Sims D, Sudbery I, Ilott N, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121-132. DOI: 10.1038/nrg3642
Duvallet C. Meta-analysis generates and prioritizes hypotheses for translational microbiome research. Microbial Biotechnology. 2018;11(2). DOI: 10.1111/1751-7915.13047
Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, McDonald BD, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity. 2015;43(3):541-553. DOI: 10.1016/j.immuni.2015.08.007
Pabst O, Cerovic V, Hornef M. Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol. 2016;37(5):287-296. DOI: 10.1016/j.it.2016.03.002
Pabst O. Correlation, consequence, and functionality in microbiome-immune interplay. Immunol Rev. 2017;279(1):4-7. DOI: 10.1111/imr.12584
Fadlallah J, El-Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, et al. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med. 2018;10(439):eaan1217. DOI: 10.1126/scitranslmed.aan1217
Macpherson A, Yilmaz B. Antibodies that lIgAte our intestinal microbes. Sci Immunol. 2018;3(23):eaat4037. DOI: 10.1126/sciimmunol.aat4037
Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198(5):2172-2181. DOI: 10.4049/jimmunol.1600165
Agace WW, McCoy KD. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity. 2017;46(4):532-548. DOI: 10.1016/j.immuni.2017.04.004
Singh R, Kumar M, Mittal A, Mehta PK. Microbial metabolites in nutrition, healthcare and agriculture. Biotech. 2017;7(1):15. DOI: 10.1007/s13205-016-0586-4
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol. 2017;9(32):1210–1226. DOI: 10.4254/wjh.v9.i32.1210
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662-671. DOI: 10.1016/j.chom.2015.03.005
McCoy K, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity. Immunol Rev. 2017;279(1):63-69. DOI: 10.1111/imr.12575
Schmidt T, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198-1215. DOI: 10.1016/j.cell.2018.02.044
Schubert K, Olde-Damink SWM, Von-Bergen M, Schaap F. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev. 2017;279(1):23-35. DOI: 10.1111/imr.12579
Martinez K, Leone V, Chang E. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem. 2017;292(21):8553-8559. DOI: 10.1074/jbc.R116.752899
Vaidyanathan B, Chaudhry A, William T, Angeletti D, Yen W, Wheatley A, et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. JEM. 2016; Dec 3. DOI: 10.1084/jem.20160789
Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M, Juste C, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40(4):608-620. DOI: 10.1016/j.immuni.2014.03.009
Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360(6390):795-800. DOI: 10.1126/science.aaq0926
Obermajer T, Lipoglavšek L, Tompa G, Treven P, Lorbeg PM, Rogelj I, et al. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS One. 2015;10(6):e0132201. DOI: 10.1371/journal.pone.0123324
Okai S, Usui F, Yokota S, Hori Y, Hasegawa M, Nakamura T, et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol. 2016;1(9):16103. DOI: 10.1038/nmicrobiol.2016.103
Palm NW, De-Zoete MR, Cullen T, Barry NA, Stefanowski J, Hao, L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–1010. DOI: 10.1016/j.cell.2014.08.006
Isolauri E, Kalliomäki M, Laitinen K, Salminem S. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. Curr Pharm Des. 2008;14(14):1368-1375. DOI: 10.2174/138161208784480207
Diesner SC, Bermayr C, Pfizner B, Assmann V, Krishnamurthy D, Starkl P, et al. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173;10-18. DOI: 10.1016/j.clim.2016.10.009.
Park HJ, Lee SW, Hong S. Regulation of allergic immune responses by microbial metabolites. Immune Netw. 2018;18(1):e15. DOI: 10.4110/in.2018.18.e15
Kukkonen K, Kuitunen M, Haahtela T, Korpela R, Poussa T, Savilahti E. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol. 2010;21(1 Pt 1):67-73. DOI: 10.1111/j.1399-3038.2009.00907.x
Dzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol. 2017;139(3):1017-1025. DOI: 10.1016/j.jaci.2016.06.047
Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 2013;4:222. DOI: 10.3389/fimmu.2013.00222

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2018 Revista Alergia México