La asociación de la microbiota humana con la inmunoglobulina A y su participación en la respuesta inmunológica

Erick Saúl Sánchez-Salguero, Leopoldo Santos-Argumedo

Resumen


La microbiota humana es el conjunto de microorganismos que residen en nuestro cuerpo. Su composición filogenética está relacionada con el riesgo de padecer enfermedades inflamatorias y cuadros alérgicos. Los humanos interaccionamos con una gran cantidad y variedad de estos microorganismos a través de la piel y las mucosas. Un mecanismo de protección inmunológica es la producción de la IgA secretora (IgAS), que reconoce los microorganismos patógenos residentes y evita su interacción con las células epiteliales del hospedero mediante la exclusión inmunológica. Se creía que la única función de la IgAS en las mucosas era reconocer y excluir a los patógenos, pero gracias a la secuenciación masiva para la caracterización filogenética de la microbiota humana ahora sabemos que puede estar asociada con microorganismos patógenos y no patógenos, asociación importante para las funciones que la microbiota lleva a cabo en los epitelios: regulación de la capacidad de ciertas especies microbianas para establecerse en la piel y en las mucosas, estimulación y regulación de la respuesta inmunológica, del riesgo de desarrollar problemas inflamatorios, cuadros alérgicos, enfermedades autoinmunes e, incluso, cáncer. La microbiota establecida determina las especies bacterianas (y probablemente también virales y de protozoarios) que residen en la piel y en las mucosas, promoviendo la diversidad microbiana.

Palabras clave


Secreción de immunoglobulin A; Microbiota; Inmunidad; Alergia; Piel y mucosa

Texto completo:

PDF PubMed (English)

Referencias


Aguilera-Montilla N, Pérez-Blas M, López-Santalla M, Martín-Villa JM. Mucosal immune system: a brief review. Immunology. 2004;23(2):207-216.

Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977 31:107-133. DOI: 10.1146/annurev.mi.31.100177.000543

Sender R, Fuchs S, Milo R. Revised Estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. DOI: 10.1371/journal.pbio.1002533

Dongarrá M, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, et al. Mucosal immunology and probiotics. Curr Allergy Asthma Rep. 2013;13(1):19-26. DOI: 10.1007/s11882-012-0313-0

Strugnell R, Wijburg O. The role of secretory antibodies in infection immunity. Nat Rev Microbiol. 2010;8(9):656-667. DOI: 10.1038/nrmicro2384

Gugler E, Von-Muralt G. About studies of immunoelectrophoresis in breast milk proteins. Milt Schweiz Med Wochenschr. 1959;89:925-929.

Woof JM, Russell MV. Structure and function relatioships in IgA. Mucosal immunol. 2011;4(6):590-597. DOI: 10.1038/mi.2011.39

Bonner A, Almogren A, Furtado PB, Kerr M, Perkins SJ. The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses. J Biol Chem. 2009;284(8):5077-5087. DOI: 10.1074/jbc.M807529200

Mestecky J, Russell MW. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett. 2009;124(2):57-62. DOI: 10.1016/j.imlet.2009.03.013

Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clon J AM Soc Nephrol. 2016;11(1):137-154. DOI: 10.2215/CJN.09430915

Heineke, M, Von-Egmond M. Immunoglobulin A: magic bullet or Trojan horse? Eur J Clin Invest. 2017;47(2):184-192. DOI: 10.1111/eci.12716

Tsuji M, Suzuki K, Kinoshita K, Fagarasan S. Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin Immunol. 2008;20(1):59-66. DOI: 10.1016/j.smim.2007.12.003

Hoeppli RE, Wu D, Cook L, Levings MK. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol. 2015;6(61):1-14. DOI: 10.3389/fimmu.2015.00061

Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012;12(12):821-832. DOI: 10.1038/nri3322

Kurokasi T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 15(3):149-159. DOI: 10.1038/nri3802

Kaetzel C. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol RV. 2005;206:83-99. DOI: 10.1111/j.0105-2896.2005.00278.x

Zuo T, Feng X, Zhang N, Xue C, Tang Q. Establishment of a functional secretory IgA transcytosis model system in vitro. Appl Microbiol Biotechnol. 2015;99(13):5535-5545. DOI: 10.1007/s00253-015-6501-9

Pilette C, Ouadrhiri Y, Dimanche F, Vaerman JP, Sibille Y. Secretory component is cleaved by neutrophil serine proteinases, but its epithelial production is increased by neutrophils through NFkB and p38 mitogen activated protein kinase-dependent mechanisms. Am J Respir Cell Mol Biol. 2003;28(4):485-498. DOI: 10.1165/rcmb.4913

Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 20081;1(1):11-22. DOI: 10.1038/mi.2007.6

Duerkop B, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009;31(3):368-376. DOI: 10.1016/j.immuni.2009.08.009

Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51. DOI: 10.1186/s13073-016-0307-y

Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. DOI: 10.1186/s40168-017-0268-4

Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425-433. DOI: 10.1111/j.1600-0897.2010.00836.x

Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376-1383. DOI: 10.1126/science.aar3318

Rogosch T, Kerzel S, Hoss K, Hoersch G, Zemlin C, Heckmann M, et al. IgA response in preterm neonates shows little evidence of antigen-driven selection. J Immunol. 2012;189(11):5449-5456. DOI: 10.4049/jimmunol.1103347

Bordon Y. Early life immunology: fetal DCs-born to be mild. Nat Rev Immunol. 2017;17(8):465. DOI: 10.1038/nri.2017.79

Kollmann TR, Kampmann B, Mazmanian SK, Marchant A, Levy O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity. 2017;21;46(3):350-363. DOI: 10.1016/j.immuni.2017.03.009

Bordon Y. Microbiota: Baby bugs can’t stop the thugs. Nat Rev Immunol. 2017;17(18):467. DOI: 10.1038/nri.2017.83

Gómez-De-Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296-1302. DOI: 10.1126/science.aad2571

Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28(4):561-568. DOI: 10.1101/gr.233940.117

Deweerdt S. How baby’s first microbes could be crucial to future health? Nature. 2018;555:S18-S19. Disponible en: https://www.nature.com/articles/d41586-018-02480-6

Von-Mutius E. The shape of the microbiome in early life. Nat Med. 2017;23(3):274-275. DOI: 10.1038/nm.4299

Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017;17(8):461-463. DOI: 10.1038/nri.2017.77

Demirjian A, Levy O. Safety and efficacy of neonatal vaccination. Eur J Immunol. 2009;39(1):36-46. DOI: 10.1002/eji.200838620

Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L, et al. Maternal immunisation: collaborating with mother nature. Lancet Infect Dis. 2017;17(7):e197-e208. DOI: 10.1016/S1473-3099(17)30229-3

Bardanzellu F, Fanos V, Reali A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients. 2017;9(8):E843. DOI: 10.3390/nu9080843

Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66:515-522. DOI: 10.1016/j.alit.2017.07.010

Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe. 2017;22(6):809-816. DOI: 10.1016/j.chom.2017.10.013

Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez M, Morán P, Rojas L, Portillo T, et al. Human intestinal microbiota: interaction between parasites and the host immune response. Arch Med Res. 2017;48(8):690-700. DOI: 10.1016/j.arcmed.2017.11.015

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. DOI: 10.1038/nm.4517

Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev. 2017;279(1):8-22. DOI: 10.1111/imr.12578

Salazar N, De-Los-Reyes-Gavilán CG. Insights into microbe–microbe interactions in human microbial ecosystems: strategies to be competitive. Front Microbiol. 2016;7:1508. DOI: 10.3389/fmicb.2016.01508

Ferreiro A, Crook N, Gasparrini AJ, Dantas G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell Press. 2018;172(6):1216-1227. DOI: 10.1016/j.cell.2018.02.015

Van-Der-Lelle D, Taghavi S, Henry C, Gilbert JA. The microbiome as a source of new enterprises and job creation: considering clinical faecal and synthetic microbiome transplants and therapeutic regulation. Microb Biotechnol. 2017;10(1):4-5. DOI: 10.1111/1751-7915.12597

Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105. DOI: 10.1111/imr.12563

Relman DA. The human microbiome and the future practice of medicine. JAMA. 2015;314(11):1127-1128. DOI: 10.1001/jama.2015.10700

Cox M, Cookson W, Moffatt M. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013;22(R1):R88-R94. DOI: 10.1093/hmg/ddt398

Rintala A, Pietilä S, Munukka E, Eerola E, Pursiheimo J, Laiho A, et al. Gut microbiota analysis results are highly dependent on the 16 rRNA gene target region, whereas the impact of DNA extraction is minor. J Biomol Tech. 2017;28(1):19-30. DOI: 10.7171/jbt.17-2801-003

Brosius, J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978;75(10):4801-4805.

Roy-Chaudhuri R, Kirthi N, Culver GM. Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity. Proc Natl Acad Sci U S A. 2010;107(10):4567-4572. DOI: 10.1073/pnas.0912305107

Maeda M, Shimada T, Ishihama A. Strength and regulation of seven rRNA promoters in Escherichia coli. PLoS ONE. 2015;10(12):e0144697. DOI: 10.1371/journal.pone.0144697

Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One. 2012;7(4):e35647. DOI: 10.1371/journal.pone.0035647

Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics. 2016;17:135. DOI: 10.1186/s12859-016-0992-y

Rusk N. Torrents of sequence. Nature Methods. 2011;8(44). DOI: 10.1038/nmeth.f.330

Pennisi E. Semiconductors inspire new sequencing technologies. Science. 2010;327(5970):1190. DOI: 10.1126/science.327.5970.1190

Sims D, Sudbery I, Ilott N, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121-132. DOI: 10.1038/nrg3642

Duvallet C. Meta-analysis generates and prioritizes hypotheses for translational microbiome research. Microbial Biotechnology. 2018;11(2). DOI: 10.1111/1751-7915.13047

Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, McDonald BD, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity. 2015;43(3):541-553. DOI: 10.1016/j.immuni.2015.08.007

Pabst O, Cerovic V, Hornef M. Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol. 2016;37(5):287-296. DOI: 10.1016/j.it.2016.03.002

Pabst O. Correlation, consequence, and functionality in microbiome-immune interplay. Immunol Rev. 2017;279(1):4-7. DOI: 10.1111/imr.12584

Fadlallah J, El-Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, et al. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med. 2018;10(439):eaan1217. DOI: 10.1126/scitranslmed.aan1217

Macpherson A, Yilmaz B. Antibodies that lIgAte our intestinal microbes. Sci Immunol. 2018;3(23):eaat4037. DOI: 10.1126/sciimmunol.aat4037

Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198(5):2172-2181. DOI: 10.4049/jimmunol.1600165

Agace WW, McCoy KD. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity. 2017;46(4):532-548. DOI: 10.1016/j.immuni.2017.04.004

Singh R, Kumar M, Mittal A, Mehta PK. Microbial metabolites in nutrition, healthcare and agriculture. Biotech. 2017;7(1):15. DOI: 10.1007/s13205-016-0586-4

Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol. 2017;9(32):1210–1226. DOI: 10.4254/wjh.v9.i32.1210

Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662-671. DOI: 10.1016/j.chom.2015.03.005

McCoy K, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity. Immunol Rev. 2017;279(1):63-69. DOI: 10.1111/imr.12575

Schmidt T, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198-1215. DOI: 10.1016/j.cell.2018.02.044

Schubert K, Olde-Damink SWM, Von-Bergen M, Schaap F. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev. 2017;279(1):23-35. DOI: 10.1111/imr.12579

Martinez K, Leone V, Chang E. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem. 2017;292(21):8553-8559. DOI: 10.1074/jbc.R116.752899

Vaidyanathan B, Chaudhry A, William T, Angeletti D, Yen W, Wheatley A, et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. JEM. 2016; Dec 3. DOI: 10.1084/jem.20160789

Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M, Juste C, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40(4):608-620. DOI: 10.1016/j.immuni.2014.03.009

Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360(6390):795-800. DOI: 10.1126/science.aaq0926

Obermajer T, Lipoglavšek L, Tompa G, Treven P, Lorbeg PM, Rogelj I, et al. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS One. 2015;10(6):e0132201. DOI: 10.1371/journal.pone.0123324

Okai S, Usui F, Yokota S, Hori Y, Hasegawa M, Nakamura T, et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol. 2016;1(9):16103. DOI: 10.1038/nmicrobiol.2016.103

Palm NW, De-Zoete MR, Cullen T, Barry NA, Stefanowski J, Hao, L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–1010. DOI: 10.1016/j.cell.2014.08.006

Isolauri E, Kalliomäki M, Laitinen K, Salminem S. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. Curr Pharm Des. 2008;14(14):1368-1375. DOI: 10.2174/138161208784480207

Diesner SC, Bermayr C, Pfizner B, Assmann V, Krishnamurthy D, Starkl P, et al. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173;10-18. DOI: 10.1016/j.clim.2016.10.009.

Park HJ, Lee SW, Hong S. Regulation of allergic immune responses by microbial metabolites. Immune Netw. 2018;18(1):e15. DOI: 10.4110/in.2018.18.e15

Kukkonen K, Kuitunen M, Haahtela T, Korpela R, Poussa T, Savilahti E. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol. 2010;21(1 Pt 1):67-73. DOI: 10.1111/j.1399-3038.2009.00907.x

Dzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol. 2017;139(3):1017-1025. DOI: 10.1016/j.jaci.2016.06.047

Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 2013;4:222. DOI: 10.3389/fimmu.2013.00222




DOI: http://dx.doi.org/10.29262/ram.v65i3.519

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.