Variación geográfica en la prevalencia de asma en niños mexicanos durante la pandemia de la COVID-19
XML

Archivos suplementarios

PDF

Palabras clave

Asthma; Epidemiology; Children; COVID-19; Prevalence; Cross-sectional study.

Cómo citar

Variación geográfica en la prevalencia de asma en niños mexicanos durante la pandemia de la COVID-19. (2023). Revista Alergia México, 69(4), 164-170. https://doi.org/10.29262/ram.v69i4.1116

Plaudit

Resumen

Objetivo: Estimar la prevalencia de asma en pacientes pediátricos, según su lugar de residencia en la República Mexicana, durante la pandemia por SARS-CoV-2.

Métodos: Estudio transversal, llevado a cabo a partir de la revisión de datos del Sistema de Vigilancia Epidemiológica para Enfermedades Respiratorias en México, analizados del 27 febrero al 5 de noviembre de 2020. Criterios de inclusión: pacientes que acudieron a la detección de infección por SARS-CoV2, menores de 18 años. La fuerza de asociación se estimó con la razón de momios.

Resultados: De 1,048,576 pacientes que acudieron a la detección de infección de SARS-CoV2, 35,899 correspondieron a pacientes pediátricos que cumplieron con los criterios del estudio. La prevalencia nacional de asma estimada fue de 3.9% (IC95%: 3.7-4.1%); la prevalencia mínima se observó en la región Suroeste (2.8%) y la máxima en el Sureste (6.8%); comparada con la región Suroeste, que registró la prevalencia mínima a nivel nacional, y la Noroeste (RM = 2.41) y Sureste (RM = 1.33) mostraron el mayor riesgo de asma en la población pediátrica.

Conclusión: La prevalencia de asma en niños mexicanos difirió notoriamente en los diferentes estados de la República Mexicana; sobresalieron las regiones Noroeste y Sureste. Este estudio pone de manifiesto el papel del medio ambiente en la prevalencia del asma en pacientes pediátricos mexicanos.

XML

Referencias

Lai CK, Beasley R, Crane J, Foliaki S, et al. International Study of Asthma and Allergies in Childhood Phase Three Study Group. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009; 64: 476-83. https://doi.org/10.1136/thx.2008.106609

Del-Rio-Navarro BE, Navarrete-Rodríguez EM, Berber A, Reyes-Noriega N, et al. The burden of asthma in an inner-city area: A historical review 10 years after ISAAC. World Allergy Organ J 2020; 13: 100092. https://doi.org/10.1016/j.waojou.2019.100092

Hernández-Galdamez DR, González-Block MÁ, Romo-Dueñas DK, Lima-Morales R, et al. Increased Risk of Hospitalization and Death in Patients with COVID-19 and Pre-existing Noncommunicable Diseases and Modifiable Risk Factors in Mexico. Arch Med Res 2020; 51: 683-9. https://doi.org/10.1016/j.arcmed.2020.07.003

Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol 2020; 52: 93-98.e2. https://doi.org/10.1016/j.annepidem.2020.08.005

Nurmagambetov T, Kuwahara R, Garbe P. The Economic Burden of Asthma in the United States, 2008-2013. Ann Am Thorac Soc 2018; 15: 348-56. https://doi.org/10.1513/AnnalsATS.201703-259OC

Chipps BE, Haselkorn T, Rosén K, Mink DR, et al. Asthma Exacerbations and Triggers in Children in TENOR: Impact on Quality of Life. J Allergy Clin Immunol Pract 2018; 6: 169-76.e2. https://doi.org/10.1016/j.jaip.2017.05.027

Larenas-Linnemann D, Michels A, Dinger H, Shah-Hosseini K, et al. Allergen sensitization linked to climate and age, not to intermittent-persistent rhinitis in a cross-sectional cohort study in the (sub)tropics. Clin Transl Allergy 2014; 4: 20. https://doi.org/10.1186/2045-7022-4-20

Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. Asthma-prone areas modeling using a machine learning model. Sci Rep 2021; 11: 1912. https://doi.org/10.1038/s41598-021-81147-1

Cherrie MPC, Sarran C, Osborne NJ. Climatic factors are associated with asthma prevalence: An ecological study using English quality outcomes framework general practitioner practice data. Sci Total Environ 2021; 779: 146478. https://doi.org/10.1016/j.scitotenv.2021.146478

Hehua Z, Qing C, Shanyan G, Qijun W, et al. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ Res 2017; 159: 519-30. https://doi.org/10.1016/j.envres.2017.08.038

Bettiol A, Gelain E, Milanesio E, Asta F, et al. The first 1000 days of life: traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ Health 2021; 20: 46. https://doi.org/10.1186/s12940-021-00728-9

Jo EJ, Choi MH, Kim CH, Won KM, et al. Patterns of medical care utilization according to environmental factors in asthma and chronic obstructive pulmonary disease patients. Korean J Intern Med. 2021; 36: 1146-56. https://doi.org/10.3904/kjim.2020

Pini L, Giordani J, Concoreggi C, Zanardini E, et al. Effects of short-term exposure to particulate matter on emergency department admission and hospitalization for asthma exacerbations in Brescia district. J Asthma 2021: 1-8. https://doi.org/10.1080/02770903.2021.1929310

Vu BN, Tapia V, Ebelt S, Gonzales GF, et al. The association between asthma emergency department visits and satellite- derived PM2.5 in Lima, Peru. Environ Res 2021; 199: 111226. https://doi.org/10.1016/j.envres.2021.111226

Acevedo N, Zakzuk J, Caraballo L. House Dust Mite Allergy Under Changing Environments. Allergy Asthma Immunol Res 2019; 11: 450-69. https://doi.org/10.4168/aair.2019.11.4.450

Banta JE, Ramadan M, Alhusseini N, Aloraini K, et al. Socio- demographics and asthma prevalence, management, and outcomes among children 1-11 years of age in California. Glob Health Res Policy 2021; 6: 17. https://doi.org/10.1186/s41256-021-00199-y

Carey MA, Card JW, Voltz JW, Arbes SJ, et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18: 308-13. https://doi.org/10.1016/j.tem.2007.08.003

Mulligan T, Frick MF, Zuraw QC, Stemhagen A, et al. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract 2006; 60: 762-9. https://doi.org/10.1111/j.1742- 1241.2006.00992.x

Laffont S, Blanquart E, Savignac M, Cénac C, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med 2017; 214: 1581-92. https://doi.org/10.1084/jem.20161807

Lewis SA, Weiss ST, Platts-Mills TA, Burge H, et al. The role of indoor allergen sensitization and exposure in causing morbidity in women with asthma. Am J Respir Crit Care Med 2002; 165: 961-6. https://doi.org/10.1164/ajrccm.165.7.2103044

Kaplan A, Hardjojo A, Yu S, Price D. Asthma Across Age: Insights From Primary Care. Front Pediatr 2019; 7: 162. https://doi.org/10.3389/fped.2019.00162

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2021. https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report- 2021-V2-WMS.pdf

Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41: 145-151. https://doi. org/10.3760/cma.j.issn.0254-6450.2020.02.003

Shi L, Xu J, Xiao W, Wang Y, et al. Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis. Ann Allergy Asthma Immunol 2021; 126: 524-34. https://doi.org/10.1016/j.anai.2021.02.013

Franco PA, Jezler S, Cruz AA. Is asthma a risk factor for coronavirus disease-2019 worse outcomes? The answer is no, but… Curr Opin Allergy Clin Immunol 2021; 21: 223-8. https://doi.org/10.1097/ACI.0000000000000734

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Revista Alergia México

Downloads

Download data is not yet available.