Resumen
Las inmunodeficiencias primarias de anticuerpos representan las enfermedades genéticas del sistema inmunitario más frecuentes y las primeras en ser reconocidas durante la historia de la inmunología. Los anticuerpos se reconocieron como parte de la respuesta inmunitaria humoral desde hace más de un siglo, tiempo después de su descubrimiento se reconoció la primera inmunodeficiencia primaria de anticuerpos: la agammaglobulinemia, seguida por la inmunodeficiencia común variable y el síndrome de hiper-IgM. Los descubrimientos subsecuentes en la historia de la inmunología facilitaron el entendimiento de la patología de estas enfermedades; por ejemplo, el descubrimiento de los linfocitos B, de las células B inmaduras en médula ósea, de la señalización del receptor de antígeno en estas células, entre muchos otros mecanismos celulares y moleculares. Las inmunodeficiencias humorales se han estudiado ampliamente y también han apoyado los avances científicos para la comprensión de los mecanismos inmunológicos que tienen lugar en nuestro organismo. Esta revisión documental pretende revisar los hallazgos relevantes en la historia del linfocito B y su conexión con el descubrimiento de nuevas inmunodeficiencias primarias de anticuerpos con el objetivo de mostrar que la generación del conocimiento científico tiene una aplicación directa en el entendimiento de los mecanismos moleculares que se ven afectados en este tipo de defectos.Referencias
Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science 2007;317:617-619.
Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nature Reviews Immunology 2013;13:519-533. 3. Glanzmann E, Riniker P. [Essential lymphocytophthisis; new clinical aspect of infant pathology]. Annales Paediatrici International Review Pediatrics 1950;175:1-32.
Greenwood B. The contribution of vaccination to global health: past, present and future. Philosophical transactions of the Royal Society of London Series B. Biological Sciences 2014;369:20130433.
Bruton OC. Agammaglobulinemia. Pediatrics 1952;9:722- 728.
Bruton OC, Apt L, Gitlin D, Janeway CA. Absence of serum gamma globulins. AMA American J Dis Children 1952;84:632-636.
Ochs HD, Hitzig WH. History of primary immunodeficiency diseases. Current Op Allergy Clin Immunol 2012;12:577- 587.
Rosen FS, Kevy SV, Merler E, Janeway CA, Gitlin D. Recurrent bacterial infections and dysgamma-globulinemia: deficiency of 7S gamma-globulins in the presence of elevated 19S gamma-globulins. Report of two cases. Pediatrics 1961;28:182-195.
Mayer L, Kwan SP, Thompson C, Ko HS, et al. Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperimmunoglobulinemia M. N Engl J Med 1986;314:409-413.
Janeway CA, Apt L, Gitlin D. Agammaglobulinemia. Transactions of the Association of American Physicians 1953;66:200-202.
Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Progress Hematol 1956;1:318-329.
Cooper MD, Faulk WP, Fudenberg HH, Good RA, et al. Classification of primary immunodeficiencies. N Engl J Med 1973;288:966-967.
Crabbe PA, Heremans JF. Lack of gamma A-immunoglobulin in serum of patients with steatorrhoea. Gut 1966;7:119- 127.
Schur PH, Borel H, Gelfand EW, Alper CA, Rosen FS. Selective gamma-g globulin deficiencies in patients with recurrent pyogenic infections. N Engl J Med 1970;283:631-634.
Umetsu DT, Ambrosino DM, Quinti I, Siber GR, Geha RS. Recurrent sinopulmonary infection and impaired antibody response to bacterial capsular polysaccharide antigen in children with selective IgG-subclass deficiency. N Engl J Med 1985;313:1247-1251.
Smith CI, Islam KB, Vorechovsky I, Olerup O, et al. X-linked agammaglobulinemia and other immunoglobulin deficiencies. Immunol Rev 1994;138:159-183.
Giblett ER. ADA and PNP deficiencies: how it all began. Ann NY Acad Sci 1985;451:1-8.
Raff MC, Megson M, Owen JJ, Cooper MD. Early production of intracellular IgM by B-lymphocyte precursors in mouse. Nature 1976;259:224-226.
Sakaguchi N, Melchers F. Lambda 5, a new light-chainrelated locus selectively expressed in pre-B lymphocytes. Nature 1986;324:579-582.
Kudo A, Melchers F. A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. EMBO J 1987;6:2267-2272.
Tsukada S, Saffran DC, Rawlings DJ, Parolini O, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279- 290.
Vetrie D, Vorechovsky I, Sideras P, Holland J, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993;361:226-233.
Spriggs MK, Armitage RJ, Strockbine L, Clifford KN, Macduff BM, et al. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med 1992;176:1543-1550.
Lederman S, Yellin MJ, Inghirami G, Lee JJ, et al. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. Roles of T cell-B-cell-activating molecule (5c8 antigen) and CD40 in contact-dependent help. J Immunol 1992;149:3817-3826.
Renshaw BR, Fanslow WC, 3rd, Armitage RJ, Campbell KA, et al. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994;180:1889-1900.
Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 2001;98:12614-12619.
Yong PF, Thaventhiran JE, Grimbacher B. “A rose is a rose is a rose”, but CVID is not CVID common variable immune deficiency (CVID), what do we know in 2011? Advances Immunol 2011;111:47-107.
Jolles S. The variable in common variable immunodeficiency: a disease of complex phenotypes. J Allergy Clinical Immunol Practice 2013;1:545-556; quiz 557.
Grimbacher B, Hutloff A, Schlesier M, Glocker E, et al. Homozygous loss of ICOS is associated with adultonset common variable immunodeficiency. Nat Immunol 2003;4:261-268.
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013;24:203-215.
Castigli E, Wilson SA, Garibyan L, Rachid R, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37:829-834.
Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820-828.
Salzer U, Bacchelli C, Buckridge S, Pan-Hammarstrom Q, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from riskincreasing TNFRSF13B variants in antibody deficiency syndromes. Blood 2009;113:1967-1976.
Warnatz K, Salzer U, Rizzi M, Fischer B, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci USA 2009;106:13945-13950.
van Zelm MC, Reisli I, van der Burg M, Castano D, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 2006;354:1901-1912.
van Zelm MC, Smet J, Adams B, Mascart F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 2010;120:1265-1274.
Thiel J, Kimmig L, Salzer U, Grudzien M, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol 2012;129:801-810.
Cevik SI, Keskin N, Belkaya S, Ozlu MI, et al. CD81 interacts with the T cell receptor to suppress signaling. PloS one. 2012;7:e50396.
Kotlarz D, Zietara N, Uzel G, Weidemann T, et al. Lossof- function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med 2013;210:433-443.
Doganci A, Birkholz J, Gehring S, Puhl AG, et al. In the presence of IL-21 human cord blood T cells differentiate to IL-10-producing Th1 but not Th17 or Th2 cells. Int Immunol 2013;25:157-169.
Ombrello MJ, Remmers EF, Sun G, Freeman AF, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 2012;366:330-338.
Lucas CL, Kuehn HS, Zhao F, Niemela JE, et al. Dominantactivating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 2014;15:88-97.
Crank MC, Grossman JK, Moir S, Pittaluga S, et al. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol.2014;34:272-276.
Conley ME, Dobbs AK, Quintana AM, Bosompem A, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J Exp Med 2012;209:463-470.
Lucas CL, Zhang Y, Venida A, Wang Y, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med 2014;211:2537-2547.
Kuehn HS, Ouyang W, Lo B, Deenick EK, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014;345:1623-1627.
Schubert D, Bode C, Kenefeck R, Hou TZ, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Med 2014;20:1410-1416.
Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Human Gen 2012;90:986-1001.
Charbonnier LM, Janssen E, Chou J, Ohsumi TK, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 2015;135:217-227.
Wang JW, Howson J, Haller E, Kerr WG. Identification of a novel lipopolysaccharide-inducible gene with key features of both A kinase anchor proteins and chs1/beige proteins. J Immunol 2001;166:4586-4595.
Wang JW, Gamsby JJ, Highfill SL, Mora LB, et al. Deregulated expression of LRBA facilitates cancer cell growth. Oncogene 2004;23:4089-4097.
Cullinane AR, Schaffer AA, Huizing M. The BEACH is hot: a LYST of emerging roles for BEACH-domain containing proteins in human disease. Traffic 2013;14:749-766.
Lopez-Herrera G, Berron-Ruiz L, Mogica-Martinez D, Espinosa-Rosales F, Santos-Argumedo L. Characterization of Bruton’s tyrosine kinase mutations in Mexican patients with X-linked agammaglobulinemia. Molecular Immunol 2008;45:1094-1098.
Vargas-Hernandez A, Lopez-Herrera G, Maravillas-Montero JL, Vences-Catalan F, et al. Consequences of two naturally occurring missense mutations in the structure and function of Bruton agammaglobulinemia tyrosine kinase. IUBMB life 2012;64:346-353.
Vargas-Hernandez A, Berron-Ruiz L, Staines-Boone T, Zarate-Hernandez M, et al. Clinical and genetic analysis of patients with X-linked hyper-IgM syndrome. Clinical Gen 2013;83:585-587.
Berron-Ruiz L, Lopez-Herrera G, Vargas-Hernandez A, Mogica-Martinez D, et al. Lymphocytes and B-cell abnormalities in patients with common variable immunodeficiency (CVID). Allergol Immunopathol 2014;42:35-43.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2016 Revista Alergia México