Los exosomas de las células presentadoras de antígeno y su papel en la regulación de las respuestas inmunológicas
PDF
PubMed (Inglés)

Archivos suplementarios

XML

Palabras clave

Célula presentadora de antígeno
Exosoma
Inmunomodulación
Inmunoterapia
Biomarcador

Resumen

Las células liberan biomoléculas de diversa naturaleza a su entorno para comunicarse con las células vecinas. Además de dichas moléculas, secretan también elementos más complejos como las vesículas; estructuras compuestas por bicapas lipídicas con proteínas transmembranales que encierran un contenido hidrofílico. Los exosomas son un subtipo pequeño de estas vesículas (de 30 a 150 nm), producidos por una amplia variedad de tipos celulares incluyendo las neuronas, células tumorales, células epiteliales y células del sistema inmunológico. De entre estas últimas, las células presentadoras de antígeno se han caracterizado como productoras de exosomas con contenido variable, tanto en condiciones de reposo como en aquellas que derivan de su estimulación o maduración. En los últimos años el estudio de los exosomas ha aumentado debido a que se ha demostrado que dichas vesículas poseen propiedades inmunomoduladoras, razón por la que ostentan un gran potencial en aplicaciones de diagnóstico y desarrollo de terapias en diferentes patologías con componentes inflamatorios.

PDF
PubMed (Inglés)

Referencias

Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nature Rev Drug Discov. 2016;15(2):125-142. DOI: http://dx.doi.org/10.1038/nrd.2015.2

Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Rev Drug Discov. 2013;12(5):347-357. DOI: http://dx.doi.org/10.1038/nrd3978

Mittelbrunn M, Gutierrez-Vázquez C, Villarroya-Beltri C, González S, Sanchez-Cabo F, Gonzalez MA, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. DOI: http://dx.doi.org/10.1038/ncomms1285

Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581-593. DOI: http://dx.doi.org/10.1038/nri2567

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. DOI: http://dx.doi.org/10.1038/ncb1596

Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest. 2016;126(4):1139-1143. DOI: http://dx.doi.org/10.1172/JCI87316

Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226-1232. DOI: http://dx.doi.org/10.1016/j.cell.2016.01.043

Sun D, Zhuang X, Zhang S, Deng ZB, Grizzle W, Miller D, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65(3):342-347. DOI: http://dx.doi.org/10.1016/j.addr.2012.07.002

Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457-471. DOI: http://dx.doi.org/10.1172/JCI40483

Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics. 2015;15(2-3):260-271. DOI: http://dx.doi.org/10.1002/pmic.201400234

Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol. 2014;5:518. DOI: http://dx.doi.org/10.3389/fimmu.2014.00518

Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1-5. DOI: http://dx.doi.org/10.1189/jlb.0306164

Vivier E, Malissen B. Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol. 2005;6(1):17-21. DOI: http://dx.doi.org/10.1038/ni1153

Théry C, Amigorena S. The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol. 2001;13(1):45-51. DOI: http://dx.doi.org/10.1016/S0952-7915(00)00180-1

Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72-81. DOI: http://dx.doi.org/10.1016/j.semcdb.2015.02.009

Chaput N, Thery C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33(5):419-440. DOI: http://dx.doi.org/10.1007/s00281-010-0233-9

Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal RNA by deep sequencing. BMC Genomics. 2013;14:319. DOI: http://dx.doi.org/10.1186/1471-2164-14-319

Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics. 2010;11(Suppl 1):S6. DOI: http://dx.doi.org/10.1186/1471-2164-11-S1-S6

Nolte-'t-Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ‘t-Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272-9285. DOI: http://dx.doi.org/10.1093/nar/gks658

Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PloS One. 2012;7(10):e46874. DOI: http://dx.doi.org/10.1371/journal.pone.0046874

Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM, Natoli G, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell. 2012;150(2):279-290. DOI: http://dx.doi.org/10.1016/j.cell.2012.05.043

McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 2014;155(8):1527-1539. DOI: http://dx.doi.org/10.1016/j.pain.2014.04.029

Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109(31):E2110-E2116. DOI: http://dx.doi.org/10.1073/pnas.1209414109

Stoorvogel W. Functional transfer of microRNA by exosomes. Blood. 2012;119(3):646-648. DOI: http://dx.doi.org/10.1182/blood-2011-11-389478

Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, et al. Endogenous RNA modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 2014;8(5):1432-1446. DOI: http://dx.doi.org/10.1016/j.celrep.2014.07.035

Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849-10859. DOI: http://dx.doi.org/10.1074/jbc.M112.446831

Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3-13. DOI: http://dx.doi.org/10.1016/j.semcancer.2014.04.009

Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, Van-Eijndhoven MA, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649-1658. DOI: http://dx.doi.org/10.1016/j.celrep.2014.08.027

Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143-1149. DOI: http://dx.doi.org/10.1038/ncb1929

Zhang J, Li S, Lu L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics Bioinformatics. 2015;13(1):17-24. DOI: http://dx.doi.org/10.1016/j.gpb.2015.02.001

Dustin ML. Signaling at neuro/immune synapses. J Clin Invest. 2012;122(4):1149-1155. DOI: http://dx.doi.org/10.1172/JCI58705

McCall CE, El-Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. J Leukoc Biol. 2011;90(3):439-446. DOI: http://dx.doi.org/10.1189/jlb.0211075

Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions. Biol Direct. 2013;8:12. DOI: http://dx.doi.org/10.1186/1745-6150-8-12

Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968-E977. DOI: http://dx.doi.org/10.1073/pnas.1521230113

Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241-D1244. DOI: http://dx.doi.org/10.1093/nar/gkr828

Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450. DOI: http://dx.doi.org/10.1371/journal.pbio.1001450

Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-289. DOI: http://dx.doi.org/10.1146/annurev-cellbio-101512-122326

Yáñez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. DOI: http://dx.doi.org/10.3402/jev.v4.27066

Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012;1(7):1074-1083. DOI: http://dx.doi.org/10.4161/onci.20897

Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, et al. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PloS One. 2008;3(10):e3377. DOI: http://dx.doi.org/10.1371/journal.pone.0003377

Srinivasan S, Su M, Ravishankar S, Moore J, Head P, Dixon JB, et al. TLR-exosomes exhibit distinct kinetics and effector function. Sci Rep. 2017;7:41623. DOI: http://dx.doi.org/10.1038/srep41623

Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol. 2008;180(5):3081-3090. DOI: http://dx.doi.org/10.4049/jimmunol.180.5.3081

Qazi KR, Gehrmann U, Domange-Jordö E, Karlsson MC, Gabrielsson S. Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood. 2009;113(12):2673-2683. DOI: http://dx.doi.org/10.1182/blood-2008-04-153536

Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3(12):1156-1162. DOI: http://dx.doi.org/10.1038/ni854

Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005;35(2):89-93. DOI: http://dx.doi.org/10.1016/j.bcmd.2005.05.003

Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147(3):599-610. DOI: http://dx.doi.org/10.1083/jcb.147.3.599

Véron P, Segura E, Sugano G, Amigorena S, Théry C. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol Dis. 2005;35(2):81-88. DOI: http://dx.doi.org/10.1016/j.bcmd.2005.05.001

Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 2005;106(1):216-223. DOI: http://dx.doi.org/10.1182/blood-2005-01-0220

Utsugi-Kobukai S, Fujimaki H, Hotta C, Nakazawa M, Minami M. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett. 2003;89(2-3):125-131. DOI: http://dx.doi.org/10.1016/S0165-2478(03)00128-7

Luketic L, Delanghe J, Sobol PT, Yang P, Frotten E, Mossman KL, et al. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol. 2007;179(8):5024-5032. DOI: http://dx.doi.org/10.4049/jimmunol.179.8.5024

Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 2007;26(19):4263-4272. DOI: http://dx.doi.org/10.1038/sj.emboj.7601842

Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007;120(6):1418-1424. DOI: http://dx.doi.org/10.1016/j.jaci.2007.06.040

Hwang I, Shen X, Sprent J. Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci USA. 2003;100(11):6670-6675. DOI: http://dx.doi.org/10.1073/pnas.1131852100

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161-72. DOI: http://dx.doi.org/10.1084/jem.183.3.1161

Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P, et al. Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol. 2002;14(7):713-722. DOI: http://dx.doi.org/10.1093/intimm/dxf048

Yin W, Ouyang S, Li Y, Xiao B, Yang H. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation. 2013;36(1):232-240. DOI: http://dx.doi.org/10.1007/s10753-012-9539-1

Yang C, Robbins PD. Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol. 2012;2012:573528. DOI: http://dx.doi.org/10.1155/2012/573528

Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594-600. DOI: http://dx.doi.org/10.1038/nm0598-594

Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol. 2014;193(3):1006-1011. DOI: http://dx.doi.org/10.4049/jimmunol.1400703

Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195-208. DOI: http://dx.doi.org/10.1038/nri3622

Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10. DOI: http://dx.doi.org/10.1186/1479-5876-3-10

Viaud S, Ploix S, Lapierre V, Thery C, Commere PH, Tramalloni D, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-gamma. J Immunother. 2011;34(1):65-75. DOI: http://dx.doi.org/10.1097/CJI.0b013e3181fe535b

Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008. DOI: http://dx.doi.org/10.1080/2162402X.2015.1071008

Kim SH, Kim S, Evans CH, Ghivizzani SC, Oligino T, Robbins PD. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol. 2001;166(5):3499-3505. DOI: http://dx.doi.org/10.4049/jimmunol.166.5.3499

Kim SH, Kim S, Oligino TJ, Robbins PD. Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL. Mol Ther. 2002;6(5):584-590. DOI: http://dx.doi.org/10.1006/mthe.2002.0712

Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol. 2005;174(10):6440-6448. DOI: http://dx.doi.org/10.4049/jimmunol.174.10.6440

Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 2009;60(2):380-389. DOI: http://dx.doi.org/10.1002/art.24229

Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med. 2015;15(1):121-126. DOI: http://dx.doi.org/10.1007/s10238-013-0271-4

Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 2006;54(12):3809-3814. DOI: http://dx.doi.org/10.1002/art.22276

Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PloS One. 2015;10(9):e0138618. DOI: http://dx.doi.org/10.1371/journal.pone.0138618

Ichii O, Otsuka-Kanazawa S, Horino T, Kimura J, Nakamura T, Matsumoto M, et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PloS One. 2014;9(10):e110383. DOI: http://dx.doi.org/10.1371/journal.pone.0110383

Sole C, Cortes-Hernandez J, Felip ML, Vidal M, Ordi-Ros J. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant. 2015;30(9):1488-1496. DOI: http://dx.doi.org/10.1093/ndt/gfv128

Tandon M, Gallo A, Jang SI, Illei GG, Alevizos I. Deep sequencing of short RNA reveals novel microRNAs in minor salivary glands of patients with Sjögren's syndrome. Oral Dis. 2012;18(2):127-131. DOI: http://dx.doi.org/10.1111/j.1601-0825.2011.01849.x

Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H, Jones HR, et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest. 2015;125(3):1215-1227. Disponible en: https://www.jci.org/articles/view/76693

Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Trans Med. 2015;13:261. Disponible en: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-015-0623-9

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2017 Revista Alergia México

Descargas

##plugins.themes.healthSciences.displayStats.noStats##