Resumen
El tejido adiposo, actualmente considerado un órgano con funciones neuroinmunoendocrinas, participa en la homeostasis del organismo. Posee gran plasticidad y variabilidad funcional acorde con la ingesta de nutrientes o con el incremento o la disminución de su volumen tisular, el cual modifica la función y el número de las células que lo integran o llegan a él. Los elementos liberados anormalmente por estas células, entre otros citocinas y adipocinas, ocasionan inflamación local y sistémica, predominantemente cuando provienen del tejido adiposo visceral y pueden afectar diversos órganos como el hígado y el sistema cardiovascular. Se ha señalado que la obesidad implica un mayor riesgo de padecer enfermedades inflamatorias, metabólicas, autoinmunes, alérgicas, alteraciones en la cicatrización y cáncer.
Referencias
Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming toward fatty acid-anabolic and catabolic pathways. Mol Metab. 2016;5(5):352-365. DOI: 10.1016/j.molmet.2016.03.002
Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219-227. DOI: 10.1016/j.cmet.2015.06.022
Cinti S. Pink adipocytes. Trends Endocrinol Metab. 2018;29(9):651-666. DOI: 10.1016/j.tem.2018.05.007
Charriere G, Cousin B, Arnaud E, André M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage evidence of plasticity. J Biol Chem. 2003;278(11):9850-9855. DOI: 10.1074/jbc.M210811200
Wang W, Sale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016;17(11):691-702. DOI: 10.1038/nrm.2016.96
Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that Brown and White adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007;104(11):4401-4406. DOI: 10.1073/pnas.0610615104
Ussar S, Lee Y, Darkel SN, Boucher J, Haering MF, Kleinridders A, et al. ASC-1, PAT2 and P2RX5 are cell surface markers for white, beige and brown adipocytes. Sci Transl Med. 2014;6(247):247ra103. DOI: 10.1126/scitranslmed.3008490
Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):100-1004. DOI: 10.1038/nature07221
Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, et al. BMP4 and MBP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol. 2014;306(5):C431-C440. DOI: 10.1152/ajpcell.00290.2013
Cinti S. The adipose organ at a glance. Dis Models Mech. 2012;5(5):588-594. DOI: 10.1242/dmm.009662
Billon N, Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep. 2012;8(1):55-66. DOI: 10.1007/s12015-011-9242-x
Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-376. DOI: 10.1016/j.cell.2012.05.016
Vohl ME, Sladek R, Robitailla J, Gurd S, Marceau P, Richard D, et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res. 2004;12(8):1217-1222. DOI: 10.1038/oby.2004.153
Rehrer CW, Karimpuour-Fard A, Hernandez TI, Law CK, Stob N, Hunter L, et al. Regional differences in subcutaneous adipose tissue gene expression. Obesity (Silver Spring). 2012;20(11):2168-2173. DOI: 10.1038/oby.2012.117
Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 2015;22(4):734-740. DOI: 10.1016/j.cmet.2015.08.001
Wang QA, Tao C, Gupta R, Scherer P. Tracking adipogenesis during white adipose tissue development, expantion and regeneration. Nat Med. 2013;19:1338-1344.
Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucosa homeostasis. J Clin Invest. 2015;125(2):478-486. DOI: 10.1172/JCI78362
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22(4):546-559. DOI: 10.1016/j.cmet.2015.09.007
Frontini A, Vitali A, Peregrini J, Murano I, Romiti C, Ricquier D, et al. White-to-brown transdifferentiation of omental cipocytes in patients affected by pheocromocytoma. Biochim Biophys Acta. 2013;1831(5):950-959. DOI: 10.1016/j.bbalip.2013.02.005
Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovascular Res. 2017;113(9):1046-1054. DOI: 10.1093/cvr/cvx086
Pachón-Peña G, Serena C, Ejerque M, Petriz J, Durán X, Oliva-Olivera W, et al. Obesity determines the immunophenotypic profile and functional characteristics of human mesenchymal stem cells from adipose tissue. Stem Cells Transl Med. 2016;5(4):464-475. DOI: 10.5966/sctm.2015-0161
Wolf G. Glucocorticoids in adipocytes stimulate visceral obesity. Nutr Rev. 2002;60(5 Pt 1):148-151. DOI: 10.1301/00296640260093823
Rangel-Moreno J, Moyron-Quiroz JE, Carragher DM, Kusser K, Hartson L, Moquin A, et al. Omental milky spots develop in the abscence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 2009;30(5):731-743. DOI: 10.1016/j.immuni.2009.03.014
Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010-1013. DOI: 10.2337/db06-1656
Sag D, Krause P, Hefrick CC, Kronenberg M, Wingender G. IL-10 producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Cin Invest. 2014;124(9):3725-3740. DOI: 10.1172/JCI72308
Koppe MJ, Nagtegaal ID, de Wilt JH, Ceelen WP. Recent insights into the pathophysiology of omental metastases. J Surg Oncol. 2014;110(6):670-675. DOI: 10.1002/jso.23681
Wang F, Vihma V, Soronen J, Turpeinen U, Hämäläinen E, Savolainen-Peltonen H, et al. 17β estradiol and estradiol fatty acyl esters and estrogen-converting enzyme expression in adipose tissue in obese men and women. J Clin Endochrinol Metab. 2013;98(12):4923-4931. DOI: 10.1210/jc.2013-2605
Randolph GJ, Bala S, Rahier F, Johnson MW, Wang PL, Nalbantoglu I, et al. Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in Crohn disease. Am J Pathol. 2016;186(12):3066-3073 DOI: 10.1016/j.ajpath.2016.07.026
Weidenger C, Ziegler J, Letizia M, Schmidt F, Siegmund B. Adipokines and the role in intestinal inflammation. Front Immunol. 2018;9:1974-1978. DOI: 10.3389/fimmu.2018.01974
Fedorenko A, Lishko P, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400-413. DOI: 10.1016/j.cell.2012.09.010
Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Ferno J, Nogueiras R, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2016;232(2):351-362. DOI: 10.1530/JOE-16-0425
Berbée JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 2015;6:6356. DOI: 10.1038/ncomms7356
Vaughan C, Bartness TJ. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1049-R-1058. DOI: 10.1152/ajpregu.00640.2011
Ryu V, Garretson J, Liu Y, Vaughan CH, Bartness TJ. Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci. 2015;35(5):2181-2190. DOI: 10.1523/JNEUROSCI.3306-14.2015
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am Physiol Endorcinol Metab 2007;293:E444-E-452.
Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, et al. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 2016;23:454-466.
Long J, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell. 2016;166(2):424-435. DOI: 10.1016/j.cell.2016.05.071
Min SY, Kady J, Nam M, Rojas-Rodríguez R, Berkenwald A, Kim JH, et al. Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 2016;22(3):312-318. DOI: 10.1038/nm.4031
Lee MW, Odegaard J, Mukundau L, Qiu Y, Molofsky AB, Nussbaum JC, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160(0):74-87. DOI: 10.1016/j.cell.2014.12.011
Berry D, Jiang Y, Arpke R, Close EL, Uchida A, Reading D, et al. Cellular aging contributes to failure of cold induced beige adipocyte formation in old mice and humans. Cell Metab. 2017;25(1):166-181. DOI: 10.1016/j.cmet.2016.10.023
Qiu Y, Nguyen K, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292-1308. DOI: 10.1016/j.cell.2014.03.066
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, et al. A creatine-drivers substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643-655. DOI: 10.1016/j.cell.2015.09.035
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075-1088. DOI: 10.1007/s00125-016-3933-4
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177-185. DOI: 10.1038/nature21363
Kim BS, Tilstam PV, Springeberg-Jung K, Boecker AH, Schmitz C, Heinrichs D, et al. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds. Peer J. 2017;5:e 2824. DOI: 10.7717/peerj.2824
Ejarque M, Caperuelo-Mallafré V, Serena C, Maymo-Masip E, Durán X, Díaz-Ramos A, et al. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation in adipose-derived stem cells. Int J Obesity. 2018;43:1256-1268. DOI: 10.1038/s41366-018-0219-6
Vega-Robledo GB. Inmunología básica y su correlación clínica. México: Editorial Médica Panamericana; 2014.
Bourlier V, Sengenes C, Zakaroff-Girard A, Decaunes P, Wdziekonski B, Galitzky J, et al. TGF-beta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages. PLoS One. 2012;7(2):e31274. DOI: 10.1371/journal.pone.0031274
Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells. 2010;28(11):2065-2072. DOI: 10.1002/stem.523
Wu D, Molofaky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243-247. DOI: 10.1126/science.1201475
Travers RL, Motta AC, Betts JA, Bouloumié A3, Thompson D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes (Lond). 2015;39(5):762-769. DOI: 10.1038/ijo.2014.195
Yu XH, Fu YC, Zhang DW, Yin K, Tang CK, et al. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245-252. DOI: 10.1016/j.cca.2013.06.006
Cautivo K, Molofasky AB. Regulation of metabolic health and adipose tissue function by group2 innate lymphoid cells. Eur J Immunol. 2016;46(6):1315-1325. DOI: 10.1002/eji.201545562
Becker M, Levings MK, Daniel C. Adipose-tissue regulatory T cells: critical player in adipose-immune crosstalk. Eur J Immunol. 2017;47(11):1867-1874. DOI: 10.1002/eji.201646739
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector cell contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914-920. DOI: 10.1038/nm.1964
Lynch L, Michelet X, Zhang S, et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T (reg) cells and macrophages in adipose tissue. Nat Immunol. 2015;16(1):85-95. DOI: 10.1038/ni.3047
Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin and resistin. Clin Chem. 2004;50(9):1511-1525. DOI: 10.1373/clinchem.2004.032482
Vera F, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, González-Gay MA, et al. Obesity, fat mass and immune system: role for leptin. Front Physiol. 2018;9:640. DOI: 10.3389/fphys.2018.00640
Sinha G. Leptin therapy gains FDA approval. Nat Biotechnol. 2014;32(4):300-302. DOI: 10.1038/nbt0414-300b
Sun Z, Dragon S, Becker A, Gounni AS, Gounni AS. Leptin inhibits neutrophil apoptosis in children via ERK/NFkB dependent pathways. PLoS One. 2013;8(1):e55249. DOI: 10.1371/journal.pone.0055249
Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Laussane). 2013;4:72-77. DOI: 10.3389/fendo.2013.00071
Williams LM. Hypothalamic dysfunction in obesity. Proc Nutr Soc. 2012;71(4):521-533. DOI: 10.1017/S002966511200078X
Wolf AM, Wolf C, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1Ra in human leukocytes. Biochem Biophys Res Commun. 2004;323(2):630-635. DOI: 10.1016/j.bbrc.2004.08.145
Hara K, Yamauchi T, Imai Y, Manabe I, Nagai R, Kadowaki T, et al. Reduced adiponectin levels is associated with severity of coronary artery disease. Int Heart J. 2007;48(2):149-153. DOI: 10.1536/ihj.48.149
Holguín F, Rojas M, Brown LA, Fitzpatrick AM. Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls. J Asthma. 2011;48(3):217-223. DOI: 10.3109/02770903.2011.555033
Beltowski J. Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity. Med Sci Monit. 2006;12(6):112-119.
Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008;15(18):1851-1862. DOI: 10.2174/092986708785133004
Kim JD, Kang Y, Kim J, Papangeli I, Kang H, Wu J, et al. Essential role of apelin signaling during lymphatic development in zebrafish. Arterioscler Thromb Vasc Biol. 2014;34(2):338-345. DOI: 10.1161/atvbaha.113.302785
Hang S, Wang G, Quiu S, Wang HQ, Gómez G, Englander EW, et al. Increased colonic apelin production in rodents with experimental colitis and in human with IBD. Regul Pept. 2007;142(3):131-137. DOI: 10.1016/j.regpep.2007.02.002
Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, et al. Adipokine apelin ameliorates chronic colitis in IL-10(-/-) mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 2018;148:2012-212. DOI: 10.1016/j.bcp.2018.01.011
Bing C, Mracek T, Gao D, Trayhurn P. Zinc-α2-glycoprotein: an adipokine modulator of body fat mass? Int J Obes (Lond). 2010;34(11):1559-1565. DOI: 10.1038/ijo.2010.105
Wang Y, Li Y, Zhang S, Zhao JY, Liu CY. Adipokine zinc-alpha-2-glycoprotein as a novel urinary biomarker presents earlier than microalbuminuria in diabetic nephropathy. J Int Med Res. 2016;44(2):278-286. DOI: 10.1177/0300060515601699
Hotamisligil GS, Bernlohr DA. Metabolic function of FABP-mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11(10):592-605. DOI: 10.1038/nrendo.2015.122
Li Y, Xiao R, Li CP, Huangfu J, Mao JF. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med Sci Monit. 2015;21:426-431. DOI: 10.12659/MSM.892431
Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol. 2014;8(Suppl 3):23-33. DOI: 10.4137/CMC.S17067
Kajimura S. Adipose tissue in 2016: Advances in the understanding of adipose tissue biology. Nat Rev Endocrinol. 2017;13(2):69-70. DOI: 10.1038/nrendo.2016.211
Wang GX, Zhaoo XY, Meng ZX, Kern M, Dietrich A, Chen Z, et al. The Brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuating hepatic lipogenesis. Nat Med. 2014;20(12):1436-1443. DOI: 10.1038/nm.3713
Hansen MJ, Broeders E, Samms RJ, Vosselman MJ, Van der-Lans A, Adams AC, et al. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep. 2015;5:10275-1082. Disponible en: https://www.nature.com/articles/srep10275
Lombardi A, Senese R, De Matteis R, Busiello RA, Cioffi F, Goglia F, et al. 3,5-diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS One. 2015;10(2):e0116498. DOI: 10.1371/journal.pone.0116498
Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305(5):E567-E572. DOI: 10.1152/ajpendo.00250.2013

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2019 Revista Alergia México