Resumen
El SARS-CoV-2 continúa infectando a miles de personas a nivel mundial. Se ha establecido que el principal mecanismo de transmisión del SARS-CoV-2 es por vía aérea, por lo que infecta inicialmente el tracto respiratorio. Actualmente, la eficacia de los fármacos utilizados contra COVID-19 es limitada y a pesar de que los programas de inmunización han iniciado, existe una desigualdad internacional en la distribución de vacunas. En este sentido, la búsqueda de terapias coadyuvantes continúa siendo una alternativa para su investigación. La suplementación con vitamina A se ha asociado con la reducción de mortalidad por infecciones; este efecto podría ser mediado por el ácido retinoico (AR), un metabolito activo de esta vitamina, que ejerce funciones inmunomoduladoras. De acuerdo con estudios preclínicos, el AR favorece la producción de inmunoglobulina A (IgA) secretora en el tracto respiratorio. Aunado a esto, la proteína de unión a retinol se ha correlacionado con la concentración de IgA y anticuerpos neutralizantes en pacientes con influenza. Por lo tanto, la presente revisión tiene como objetivo abordar la participación de la vitamina A en la producción de la inmunoglobulina A secretora en el epitelio del tracto respiratorio para resaltar su potencial función protectora contra la infección por SARS-CoV-2.
Referencias
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382(8):727–33. DOI: 10.1056/NEJMoa2001017
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5(4):536–44. DOI: 10.1038/s41564-020-0695-z
Wang C, Wang Z, Wang G, et al. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther 2021;6(1):114. DOI: 10.1038/s41392-021-00527-1
Johns Hopkins University [sitio web]. Estados Unidos de América: COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU); 2021 Disponible en: https://coronavirus.jhu.edu/map.html
Rodriguez-Guerra M, Jadhav P, Vittorio TJ. Current treatment in COVID-19 disease: a rapid review. Drugs Context 2021;10 DOI: 10.7573/dic.2020-10-3
Tatar M, Shoorekchali JM, Faraji MR, et al. International COVID-19 vaccine inequality amid the pandemic: Perpetuating a global crisis? J Glob Health 2021;11:3086. DOI: 10.7189/jogh.11.03086
Krishnan A, Hamilton JP, Alqahtani SA, et al. COVID-19: An overview and a clinical update. World J Clin Cases 2021;9(1):8–23. DOI: 10.12998/wjcc.v9.i1.8
Calder PC, Carr AC, Gombart AF, et al. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020;12(4):1181. DOI: 10.3390/nu12041181
Midha IK, Kumar N, Kumar A, et al. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2020:e2204–e2204. DOI: 10.1002/rmv.2204
Oliveira L de M, Teixeira FME, Sato MN. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm 2018;2018:3067126. DOI: 10.1155/2018/3067126
Li H, Liu S-M, Yu X-H, et al. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents 2020;55(5):105951. DOI: 10.1016/j.ijantimicag.2020.105951
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1–23. DOI: 10.1007/978-1-4939-2438-7_1
Ganesh B, Rajakumar T, Malathi M, et al. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future perspectives. Clin Epidemiol Glob Heal 2021;10:100694. DOI: 10.1016/j.cegh.2020.100694
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117(21):11727–34. DOI: 10.1073/pnas.2003138117
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2):271-280.e8. DOI: 10.1016/j.cell.2020.02.052
Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14(2):185–92. DOI: 10.1007/s11684-020-0754-0
Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann Intern Med 2021;174(1):69–79. DOI: 10.7326/M20-5008
Vareille M, Kieninger E, Edwards MR, et al. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011;24(1):210–29. DOI: 10.1128/CMR.00014-10
Chea EP, Lopez MJ, Milstein H [sitio web]. Estados Unidos de América: Vitamin A; 2020 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK482362/
D’Ambrosio DN, Clugston RD, Blaner WS. Vitamin A Metabolism: An Update. Nutr 2011;3(1) DOI: 10.3390/nu3010063
Dawson MI. The importance of vitamin A in nutrition. Curr Pharm Des 2000;6(3):311–25. DOI: 10.2174/1381612003401190
Debelo H, Novotny JA, Ferruzzi MG. Vitamin A. Adv Nutr 2017;8(6):992–4. DOI: 10.3945/an.116.014720
Gilbert C. What is vitamin A and why do we need it? Community Eye Heal 2013;26(84):65.
Erkelens MN, Mebius RE. Retinoic Acid and Immune Homeostasis: A Balancing Act. Trends Immunol 2017;38(3):168–80. DOI: 10.1016/j.it.2016.12.006
Harrison EH, Hussain MM. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A. J Nutr 2001;131(5):1405–8. DOI: 10.1093/jn/131.5.1405
Goodman DW, Huang HS, Shiratori T. Tissue distribution and metabolism of newly absorbed vitamin A in the rat. J Lipid Res 1965;6:390–6.
Blaner WS, O’Byrne SM, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 2009;1791(6):467–73. DOI: 10.1016/j.bbalip.2008.11.001
Kawaguchi R, Zhong M, Kassai M, et al. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6. Membranes (Basel) 2015;5(3):425–53. DOI: 10.3390/membranes5030425
Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol 2006;66(7):606–30. DOI: 10.1002/neu.20242
Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8(9):685–98. DOI: 10.1038/nri2378
Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004;21(4):527–38. DOI: 10.1016/j.immuni.2004.08.011
Coombes JL, Siddiqui KRR, Arancibia-Cárcamo C V, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204(8):1757–64. DOI: 10.1084/jem.20070590
Arnold SLM, Amory JK, Walsh TJ, et al. A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J Lipid Res 2012;53(3):587–98. DOI: 10.1194/jlr.D019745
Repa JJ, Hanson KK, Clagett-Dame M. All-trans-retinol is a ligand for the retinoic acid receptors. Proc Natl Acad Sci U S A 1993;90(15):7293–7. DOI: 10.1073/pnas.90.15.7293
Cvekl A, Wang W-L. Retinoic acid signaling in mammalian eye development. Exp Eye Res 2009;89(3):280–91. DOI: 10.1016/j.exer.2009.04.012
le Maire A, Teyssier C, Balaguer P, et al. Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. Cells 2019;8(11):1392. DOI: 10.3390/cells8111392
Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J Off Publ Fed Am Soc Exp Biol 1996;10(9):940–54.
Semba RD [sitio web]. Estados Unidos de América: 12, Vitamin A and Immune Function; 1999 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK230968/
Green HN, Mellanby E. Vitamin A as an anti-infective agent. Br Med J 1928;2(3537):691–6. DOI: 10.1136/bmj.2.3537.691
Semba RD. Vitamin A as “anti-infective” therapy, 1920-1940. J Nutr 1999;129(4):783–91. DOI: 10.1093/jn/129.4.783
Stephensen CB. Vitamin A, infection, and immune function. Annu Rev Nutr 2001;21:167–92. DOI: 10.1146/annurev.nutr.21.1.167
Huiming Y, Chaomin W, Meng M. Vitamin A for treating measles in children. Cochrane Database Syst Rev 2005;2005(4):CD001479. DOI: 10.1002/14651858.CD001479.pub3
Ramachandran G, Santha T, Garg R, et al. Vitamin A levels in sputum-positive pulmonary tuberculosis patients in comparison with household contacts and healthy “normals”. Int J Tuberc Lung Dis Off J Int Union against Tuberc Lung Dis 2004;8(9):1130–3.
Qrafli M, El Kari K, Aguenaou H, et al. Low plasma vitamin A concentration is associated with tuberculosis in Moroccan population: a preliminary case control study. BMC Res Notes 2017;10(1):421. DOI: 10.1186/s13104-017-2737-z
Chau N, Tébi A, Créton C, et al. Relationship between plasma retinol and infectious diseases in the elderly. A case-control study. Ann Nutr Metab 2000;44(5–6):256–62. DOI: 10.1159/000046693
Timoneda J, Rodríguez-Fernández L, Zaragozá R, et al. Vitamin A Deficiency and the Lung. Nutrients 2018;10(9):1132. DOI: 10.3390/nu10091132
Stephensen CB, Alvarez JO, Kohatsu J, et al. Vitamin A is excreted in the urine during acute infection. Am J Clin Nutr 1994;60(3):388–92. DOI: 10.1093/ajcn/60.3.388
Sarohan AR. COVID-19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med Hypotheses 2020;144:110250. DOI: 10.1016/j.mehy.2020.110250
Organización Mundial de la Salud [sitio web]. Suiza: The top 10 causes of death; 2020 Disponible en: https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death/
Ganz T. Epithelia: not just physical barriers. Proc Natl Acad Sci U S A 2002;99(6):3357–8. DOI: 10.1073/pnas.072073199
Kurn H, Daly DT [sitio web]. Estados Unidos de América: Histology, Epithelial Cell; 2021 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK559063/
Muse ME, Crane JS [sitio web]. Estados Unidos de América: Physiology, Epithelialization; 2021 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK532977/
Denney L, Ho L-P. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018;41(4):218–33. DOI: 10.1016/j.bj.2018.08.004
Huang Z, Liu Y, Qi G, et al. Role of Vitamin A in the Immune System. J Clin Med 2018;7(9):258. DOI: 10.3390/jcm7090258
Marshall JS, Warrington R, Watson W, et al. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018;14(2):49. DOI: 10.1186/s13223-018-0278-1
Twigg HL. Humoral immune defense (antibodies): recent advances. Proc Am Thorac Soc 2005;2(5):417–21. DOI: 10.1513/pats.200508-089JS
Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol 2010;125(2):S33-40. DOI: 10.1016/j.jaci.2009.09.017
Janeway CA, Travers P, Walport M, et al. [sitio web]. Estados Unidos de América: The Humoral Immune Response; 2001 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK10752/
Stavnezer J, Guikema JEJ, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008;26:261–92. DOI: 10.1146/annurev.immunol.26.021607.090248
Subbarao K, Mahanty S. Respiratory Virus Infections: Understanding COVID-19. Immunity 2020;52(6):905–9. DOI: 10.1016/j.immuni.2020.05.004
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013;4:185. DOI: 10.3389/fimmu.2013.00185
Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 1987;106(6):892–9. DOI: 10.7326/0003-4819-106-6-892
de Sousa-Pereira P, Woof JM. IgA: Structure, Function, and Developability. Antibodies (Basel, Switzerland) 2019;8(4):57. DOI: 10.3390/antib8040057
Johansen FE, Braathen R, Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand J Immunol 2000;52(3):240–8. DOI: 10.1046/j.1365-3083.2000.00790.x
Reinholdt J, Husby S [sitio web]. Estados Unidos de América: IgA and Mucosal Homeostasis; 2013 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK6628/
Chen K, Magri G, Grasset EK, et al. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020;20(7):427–41. DOI: 10.1038/s41577-019-0261-1
Tezuka H, Ohteki T. Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Front Immunol 2019;10:1891. DOI: 10.3389/fimmu.2019.01891
Komban RJ, Strömberg A, Biram A, et al. Activated Peyer’s patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun 2019;10(1):2423. DOI: 10.1038/s41467-019-10144-w
Cerutti A. The regulation of IgA class switching. Nat Rev Immunol 2008;8(6):421–34. DOI: 10.1038/nri2322
Mora JR, Iwata M, Eksteen B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006;314(5802):1157–60. DOI: 10.1126/science.1132742
Randall TD. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol 2010;107:187–241. DOI: 10.1016/B978-0-12-381300-8.00007-1
Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 2005;206:83–99. DOI: 10.1111/j.0105-2896.2005.00278.x
Schroeder Jr HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol 2010;125(2 Suppl 2):S41–52. DOI: 10.1016/j.jaci.2009.09.046
Ross AC, Chen Q, Ma Y. Vitamin A and retinoic acid in the regulation of B-cell development and antibody production. Vitam Horm 2011;86:103–26. DOI: 10.1016/B978-0-12-386960-9.00005-8
Mora JR, von Andrian UH. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol 2009;21(1):28–35. DOI: 10.1016/j.smim.2008.08.002
Park H-Y, Park J-Y, Kim J-W, et al. Differential expression of dendritic cell markers by all-trans retinoic acid on human acute promyelocytic leukemic cell line. Int Immunopharmacol 2004;4(13):1587–601. DOI: 10.1016/j.intimp.2004.07.010
Suzuki K, Maruya M, Kawamoto S, et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 2010;33(1):71–83. DOI: 10.1016/j.immuni.2010.07.003
Sirisinha S, Darip MD, Moongkarndi P, et al. Impaired local immune response in vitamin A-deficient rats. Clin Exp Immunol 1980;40(1):127–35.
Sirisinha S, Suskind R, Edelman R, et al. Secretory and serum IgA in children with protein-calorie malnutrition. Pediatrics 1975;55(2):166–70.
Davis CY, Sell JL. Immunoglobulin concentrations in serum and tissues of vitamin A-deficient broiler chicks after Newcastle disease virus vaccination. Poult Sci 1989;68(1):136–44. DOI: 10.3382/ps.0680136
Wiedermann U, Hanson LA, Holmgren J, et al. Impaired mucosal antibody response to cholera toxin in vitamin A-deficient rats immunized with oral cholera vaccine. Infect Immun 1993;61(9):3952–7. DOI: 10.1128/iai.61.9.3952-3957.1993
Wiedermann U, Hanson LA, Kahu H, et al. Aberrant T-cell function in vitro and impaired T-cell dependent antibody response in vivo in vitamin A-deficient rats. Immunology 1993;80(4):581–6.
Morikawa K, Nonaka M. All- trans -retinoic acid accelerates the differentiation of human B lymphocytes maturing into plasma cells 2005;5:1830–8. DOI: 10.1016/j.intimp.2005.06.002
Surman SL, Rudraraju R, Sealy R, et al. Vitamin A deficiency disrupts vaccine-induced antibody-forming cells and the balance of IgA/IgG isotypes in the upper and lower respiratory tract. Viral Immunol 2012;25(4):341–4. DOI: 10.1089/vim.2012.0023
Rudraraju R, Jones BG, Surman SL, et al. Respiratory tract epithelial cells express retinaldehyde dehydrogenase ALDH1A and enhance IgA production by stimulated B cells in the presence of vitamin A. PLoS One 2014;9(1):e86554. DOI: 10.1371/journal.pone.0086554
Surman SL, Jones BG, Sealy RE, et al. Oral retinyl palmitate or retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vaccine in vitamin A deficient mice. Vaccine 2014;32(22):2521–4. DOI: 10.1016/j.vaccine.2014.03.025
Surman SL, Jones BG, Rudraraju R, et al. Intranasal administration of retinyl palmitate with a respiratory virus vaccine corrects impaired mucosal IgA response in the vitamin A-deficient host. Clin Vaccine Immunol 2014;21(4):598–601. DOI: 10.1128/CVI.00757-13
Patel N, Penkert RR, Jones BG, et al. Baseline Serum Vitamin A and D Levels Determine Benefit of Oral Vitamin A&D Supplements to Humoral Immune Responses Following Pediatric Influenza Vaccination. Viruses 2019;11(10) DOI: 10.3390/v11100907
Jones BG, Oshansky CM, Bajracharya R, et al. Retinol binding protein and vitamin D associations with serum antibody isotypes, serum influenza virus-specific neutralizing activities and airway cytokine profiles. Clin Exp Immunol 2016;183(2):239–47. DOI: 10.1111/cei.12718
Du W, Wang H, Wang Z, et al. Dietary vitamin a intake among Chinese adults: findings from CNTCS2015. Nutr J 2018;17(1):60. DOI: 10.1186/s12937-018-0369-3
Kim S, Kim Y-N, Cho Y-O. Vitamin A status of 20- to 59-year-old adults living in Seoul and the metropolitan area, Korea. Nutr Res Pract 2012;6(1):45–50. DOI: 10.4162/nrp.2012.6.1.45
Ramírez-Silva I, Rodríguez-Ramírez S, Barragán-Vázquez S, et al. Prevalence of inadequate intake of vitamins and minerals in the Mexican population correcting by nutrient retention factors, Ensanut 2016. Salud Publica Mex 2020;62(5):521–31. DOI: 10.21149/1109
González-Estevez G, Turrubiates-Hernández FJ, Herrera-Jiménez LE, et al. Association of Food Intake Quality with Vitamin D in SARS-CoV-2 Positive Patients from Mexico: A Cross-Sectional Study. Int J Environ Res Public Health 2021;18(14) DOI: 10.3390/ijerph18147266
Reider CA, Chung R-Y, Devarshi PP, et al. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005-2016 NHANES. Nutrients 2020;12(6):1735. DOI: 10.3390/nu12061735
Beltrán-de-Miguel B, Estévez-Santiago R, Olmedilla-Alonso B. Assessment of dietary vitamin A intake (retinol, α-carotene, β-carotene, β-cryptoxanthin) and its sources in the National Survey of Dietary Intake in Spain (2009-2010). Int J Food Sci Nutr 2015;66(6):706–12. DOI: 10.3109/09637486.2015.1077787
Messina AE, Hambridge TL, Mackerras DEM. Change in Australian Vitamin A Intakes over Time. Curr Dev Nutr 2019;3(9):nzz081–nzz081. DOI: 10.1093/cdn/nzz081
Institute of Medicine (US) Panel on Micronutrients [sitio web]. Estados Unidos de América: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; 2001 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK222318/
World Health Organization [sitio web]. Suiza: Global prevalence of vitamin A deficiency in populations at risk 1995-2005: WHO global database on vitamin A deficiency; 2009 Disponible en: https://apps.who.int/iris/handle/10665/44110
Hodge C, Taylor C [sitio web]. Estados Unidos de América: Vitamin A Deficiency; 2021 Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK567744/
Christian P, West KPJ. Interactions between zinc and vitamin A: an update. Am J Clin Nutr 1998;68(2 Suppl):435S-441S. DOI: 10.1093/ajcn/68.2.435S
Tanumihardjo SA, Russell RM, Stephensen CB, et al. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J Nutr 2016;146(9):1816S-48S. DOI: 10.3945/jn.115.229708
Tanumihardjo SA. Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr 2011;94(2):658S-65S. DOI: 10.3945/ajcn.110.005777
de Pee S, Dary O. Biochemical indicators of vitamin A deficiency: serum retinol and serum retinol binding protein. J Nutr 2002;132(9 Suppl):2895S-2901S. DOI: 10.1093/jn/132.9.2895S
Oregon State University [sitio web]. Estados Unidos de América: Vitamin A; 2021 Disponible en: https://lpi.oregonstate.edu/mic/vitamins/vitamin-A
National Institutes of Health. Office of Dietary Supplements [sitio web]. Estados Unidos de América: Vitamin A; 2021 Disponible en: https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/
Ross AC. Diet in vitamin A research. Methods Mol Biol 2010;652:295–313. DOI: 10.1007/978-1-60327-325-1_17

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2021 Revista Alergia México