Importance of autoimmunity induced by SARS-CoV-2 and development of post-vaccination autoimmune diseases
PDF (Spanish)
XML (Spanish)

Keywords

COVID-19
severity
autoimmunity
vaccination
molecular mimicry

Abstract

SARS-CoV-2, a virus belonging to the large family of coronaviruses, aroused great interest following the outbreak of this new strain reported in 2019, in Wuhan China. Its clinical spectrum is highly variable, ranging from a self-limited disease to an acute respiratory distress syndrome with systemic clinical manifestations (COVID-19), in which the immune system plays a key role in the pathophysiology of this disease and in its severity; several studies show the prevalence of some autoimmune markers suggesting that they may lead to autoimmune states. The most important strategy worldwide to protect the population was the development of vaccines to induce immunity to severe COVID-19; however, vaccines have also been shown to have the ability to produce autoimmune states in a small percentage of the world's population; nevertheless, the best strategy remains vaccination. The aim of this review is to show the current overview of the mechanisms of SARS-CoV-2-induced autoimmunity and post-vaccination for a better understanding and identification of these in the population. Publications from 2019 to 2022 were reviewed in PubMed as the primary search source.

PDF (Spanish)
XML (Spanish)

References

Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020; 52(11):549-557. doi: 10.1152/physiolgenomics.

Hopfer H, Herzig MC, Gosert R, et al. Hunting coronavirus by transmission electron microscopy - a guide to SARS-CoV-2-associated ultrastructural pathology in COVID-19 tissues. Histopathology. 2021;78(3):358-370. doi: 10.1111/his.14264.

Ehrenfeld M, Tincani A, Andreoli L, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. doi: 10.1016/j.autrev.2020.102597.

Chen, Y, Xu Z., Wang P, et al. New‐onset autoimmune phenomena post‐COVID‐19 vaccination. Immunology. 2022;165(4):386-401. doi.org/10.1111/imm.13443.

Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021;384(15):1412-1423. doi: 10.1056/NEJMoa2101765.

Fujinami RS, Von Herath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006 ;19(1):80-94. doi: 10.1128/CMR.19.1.80-94.2006.

Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. AutoimmunRev.2021; 20(4), 102792. https://doi.org/10.1016/j.autrev.2021.102792.

Gandhi RT, Lynch JB, Del Rio C. Mild or moderate Covid-19. N Engl J Med. 2020; 383(18):1757-1766. doi.org/10.1056/NEJMcp2009249.

Arandia G, Jaime A, Gabriela L. SARS-CoV-2: structure, replication and physiopathological mechanism related to COVID-19. Gac Med Bol. 2020; 43(2): 170-178.

Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 725:138277-18.doi.org/10.1016/j.scitotenv.2020.138277.

Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022; 270–284 doi.org/10.1038/s41579-022-00713-0.

D’Amico F, Baumgart DC, Danese S, Peyrin L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin Gastroenterol Hepatol.2020; 18(8): 1663-72. doi.org/10.1016/j.cgh.2020.04.001.

Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288(2):192–206. doi.org/10.1111/ joim.13091.

Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi: 10.3390/v11080762.

Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol. 2009; 155(1):1-15.doi: 10.1111/j.1365-2249.2008.03834.x.

Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100-123. doi.org/10.1016/j.jaut.2018.10.012.

Rainel SR, Ernesto SR, Néstor RH. La respuesta inmune antiviral. Rev. Cubana Med Gen Integr.1998; 14(1), 93-98.

Salle V. Coronavirus-induced autoimmunity. Clin Immunol. 2021;226:108694. doi: 10.1016/j.clim.2021.108694.

Kanduc D, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020;68(5): 310–313. doi.org/10.1007/s12026-020-09152-6.

Munavalli GG, Guthridge R, Knutsen-Larson S, Brodsky A, Matthew E, Landau M. "COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and treatment". Arch Dermatol Res. 2022;314(1):1-15. doi.org/10.1007/s00403-021-02190-6.

Woodruff MC, Ramonell RP, Saini AS, et al. Relaxed peripheral tolerance drives broad de novo autoreactivity in severe COVID 19. MedRxiv. 2021;10.21.20216192. doi:org/10.1101/2020.10.21.20216192.

Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Tthromboslysis. 2020; 50(3), 580-586. //doi.org/10.1007/s11239-020-02182-9.

Xiao M, Zhang Y, Zhang S, et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol. 2020; 72(12): 1998-2004. doi.org/10.1002/art.41425.

Sanz JM, Lahoz AG, Martín RO. Role of the inmune system in SARS-CoV-2 infection: immunopathology of COVID-19. Medicine (Madr). 2021;13(33):1917-1931.https://doi:10.1016/j.med.2021.05.005.

Lin YS, Lin CF, Fang YT, et al. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin Exp Immunol. 2005;141(3):500-508.doi.org/10.1111/j.1365-2249.2005. 02864.x.

Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?. Autoimmun Rev. 2020; 19(5):102524. doi.org/10.1016/j.autrev.2020.102524.

Kichloo A, Aljadah M, Albosta M, Wani F, Singh J, Solanki S. COVID-19 and acute lupus pneumonitis: diagnostic and treatment dilemma. J Investig Med High Impact Case Rep. 2020;8:2324709620933438. doi.org/10.1177/2324709620933438.

Gracia-Ramos AE, Saavedra-Salinas MA. Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatol Int. 2021; 41(4):799–809. doi.org/10.1007/s00296-021-04794-7.

Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021; 33(2):155–162. doi.org/10.1097/BOR.0000000000000776.

Gigli GL, Vogrig A, Nilo A, et al. HLA and immunological features of SARS-CoV-2-induced Guillain-Barré syndrome. Neurol Sci. 2020;41(12):3391-3394. doi.org/10.1007/s10072-020-04787-7.

Caress JB, Castoro RJ, Simmons Z, et al. COVID-19-associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve. 2020;62(4):485-491. doi.org/10.1002/mus.27024.

Assiri SA, Althaqafi RMM, Alswat K, et al. Post COVID-19 Vaccination-Associated Neurological Complications. Neuropsychiatr Dis Treat. 2022;18:137-154. doi:10.2147/NDT.S343438.

Hussain A, Rafeeq H, Asif HM, et al. Current scenario of COVID-19 vaccinations and immune response along with antibody titer in vaccinated inhabitants of different countries. Int Immunopharmacol. 2021;99:108050. doi:10.1016/j.intimp.2021.108050.

DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun. 2021;538:211-217. doi:10.1016/j.bbrc.2020.10.060.

Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;373:n1088. doi:10.1136/bmj.n1088.

Casas I, Mena G. La vacunación de la COVID-19 [The COVID-19 vaccination]. Med Clin (Barc). 2021;156(10):500-502. doi:10.1016/j.medcli.2021.03.001.

Food and Drug Administration. Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials [Internet]; Sep 2007[Consultado 13 de julio de 2022]. Disponible en: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/toxicity-grading-scale-healthy-adult-and-adolescent-volunteers-enrolled-preventive-vaccine-clinical.

Chaparro Mérida NA, Moreno Samper D, Franco Lacato AO. Seguridad de las vacunas contra la COVID-19. Rev Perú Med Exp Salud Pública. 2021;38(4):634-42. doi:10.17843/rpmesp.2021.384.9308.

Olivieri B, Betterle C, Zanoni G. Vaccinations and Autoimmune Diseases. Vaccines. 2021;9(8):815. Doi:10.3390/vaccines9080815.

Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: whats is the evidence? Lancet 2003;362:1659–66. doi:10.1016/S0140-6736(03)14802-7.

Shoenfeld Y, Agmon-Levin N. ‘ASIA’ – Autoinmune/inflammatory syndrome induced by adjuvants. Journal of autoimmunity. 2011;36(1):4-8. doi:10.1016/j.jaut.2010.07.003.

Jara LJ, Vera-Lastra O, Mahroum N, Pineda C, Shoenfeld Y. Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand?. Clin Rheumatol. 2022;41(5):1603-1609. doi:10.1007/s10067-022-06149-4.

World Health Organization. Immunization Safety Surveillance: Guidelines for Immunization Programme Managers on Surveillance of Adverse Events Following Immunization, 3rd ed.; WHO: Geneva, Switzerland, 2016; pp. 1–169.

Vogrig A, Janes F, Gigli GL, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 vaccination. Clinical Neurology and Neurosurgery. 2021;208:106839. doi:10.1016/j.clineuro.2021.106839.

Aye YN, Mai AS, Zhang A, et al. Acute Myocardial Infarction and Myocarditis following COVID-19 Vaccination. QJM. 2021;0:1-5. doi:10.1093/qjmed/hcab252.

Oo WM, Giri P, de Souza A. AstraZeneca COVID-19 vaccine and Guillain- Barré Syndrome in Tasmania: A causal link?. J Neuroimmunol. 2021;360:577719. doi:10.1016/j.jneuroim.2021.577719.

Mehta PR, Apap Mangion S, Benger M, et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination - A report of two UK cases. Brain Behav Immun. 2021;95:514-517. doi:10.1016/j.bbi.2021.04.006.

Guevara–Silva E, Castro–Suárez S. Escasas y probables complicaciones neurológicas de las vacunas contra el Sars-Cov-2. Rev Neuropsiquiatr. 2021;84(3):157-158. doi:10.20453/rnp.v84i3.4031.

Hsiao YT, Tsai MJ, Chen YH, Hsu CF. Acute Transverse Myelitis after COVID-19 Vaccination. Medicina (Kauneas). 2021;57(10):1010. doi:10.3390/medicina57101010.

Bolletta E, Iannetta D, Mastrofilippo V, et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J Clin Med. 2021;10(24):5960. doi:10.3390/jcm10245960.

Oonk NGM, Ettema AR, van Berghem H, de Klerk JJ, van der Vegt JPM, van der Meulen M. SARS-CoV-2 vaccine-related neurological complications. Neurol Sci. 2022;43(4):2295-2297. doi:10.1007/s10072-022-05898-z.

Bennett C, Chambers LM, Son J, Goje O. Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination. J Obstet Gynaecol Res. 2021;47(11):4077-4080. doi:10.1111/jog.14978.

Mauriello A, Scimeca M, Amelio I, et al. Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death Dis. 2021;12(8):762. doi:10.1038/s41419-021-04058-z.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Alergia México

Downloads

Download data is not yet available.