Innate immune system and SARS-CoV-2 infection. Systematic review
PDF (Spanish)
XML (Spanish)

Keywords

SARS-CoV-2
COVID-19
Immune response
Immunotoxicity
Infection

Abstract

In the face of SARS-CoV-2 infection, an uncontrolled and unregulated response of the innate immune system can cause local and multisystem organ damage, which is characteristic of patients admitted to hospitals and who die from this virus. See some of the factors involved in the severe pathological pictures of this infection, mainly in men, in articles published between 2010 and 2021 and specialized books. Research shows that age, gender, race, and blood group (specifically A), coupled with factors such as immunosenescence and comorbidities, are crucial in the severity of the disease. Finally, it is suggested that, although men and women have the same probability of becoming ill with COVID-19, men are more likely to die because they have more ACE2 receptors in plasma, greater esterase activity, produce more proinflammatory cytokines, and respond differently to hormones (testosterone favors the innate immune response more while estrogens favor the adaptive one) and to the effects of dopamine inhibitors, involved in the inflammatory response.

PDF (Spanish)
XML (Spanish)

References

Larsen, A, Rambeaud, M. Conceptos en inmunología. Generalidades. En: Moredo, F, Larsen, A, Stanchi, N, coordinadores. Patogenicidad microbiana en medicina veterinaria. Buenos Aires: Editorial de la Universidad de La Plata-Universidad Nacional de La Plata; 2019:30-77.

Brooks, GF, Carrol, KC, Butel, JS, et al. Inmunología. En Microbiología médica, Jawetz, Melnick y Adelberg. 25a ed. México: McGraw-Hill Educación-Lange; 2001:121-144.

Accinelli, R, Zhang, C, Ju, J, et al. COVID-19: la pandemia por el nuevo virus SARS-CoV-2. Rev Peru Med Exp Salud Publica 2020;37:302-11. DOI: 10.17843/rpmesp.2020.372.5411

Espinosa, F. Inmunopatología de la infección por virus SARS-CoV-2. Acta Pediatr Mex 2020;41:S42-S50.

Huang, S, Wang, J, Liu, F, et al. COVID‐19 patients with hypertension have more severe disease: a multicenter retrospective observational study. Hypertens Res 2020;43:824‐831. DOI: 10.1038/s41440-020-0485-2

Marsán, V, Casado, I, Hernández, E. Respuesta inmune adaptativa en la infección por SARS-CoV-2. Rev Cubana Hematol Inmunol Hemoter 2020;36:1-11.

Ayala, VS, Landa, A. Anticuerpos: sus propiedades, aplicaciones y perspectivas. Med UIS 2007;20. Disponible en: https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/1988

González, D. Covid-19: Más del 10 % de pacientes tienen autoanticuerpos que atacan al sistema inmune [Internet]. Gaceta Médica; 2020 [citado el 23 de noviembre de 2021]. Disponible en: https://gacetamedica.com/investigacion/covid-19-mas-del-10-de-pacientes-tienen-autoanticuerpos-que-atacan-al-sistema-inmune/

Zuo, Y, Estes, SK, Ali, RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020;12:570.

Guzmán, O, Guardado, K, Varela, M, et al. Potential protection of pre-existent antibodies to human coronavirus 229E on COVID-19 severity. Int J Environ Res Public Health 2021;18:9058. DOI: https://doi.org/10.3390/ijerph18179058

Khoury, DS, Cromer, D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021;27:1205-1211. DOI: 10.1038/s41591-021-01377-8

Morales, J, Bedolla, M. Asthma is not a risk factor for severity of SARS-CoV-2 infection in the Mexican population. J Asthma 2022. DOI: https://doi.org/10.1080/02770903.2021.2010745

Lehrer, S, Rheinstein, P. Eyeglasses reduce risk of COVID-19 infection. In Vivo 2021;35:1581-1582. DOI: 10.21873/invivo.12414

Zeng, W, Wang, X, Li, J, et al. Association of daily wear of eyeglasses with susceptibility to coronavirus disease 2019 infection. JAMA Ophthalmol 2020;138:1196-1199. DOI: 10.1001/jamaophthalmol.2020.3906

Brauner, J, Mindermann, S, Sharma, M, et al. Inferring the effectiveness of government interventions against COVID-19. Sci 2020;371.

Davies, NG, Kucharski, AJ, Eggo, RM, et al. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health 2020;5. DOI: https://doi.org/10.1016/S2468-2667(20)30133-X

Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Richardson, S, Hirsch, JS, Narasimhan, M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020;323:2052-2059. DOI: 10.1001/jama.2020.6775

Pawelec, G. Aging as an inflammatory disease and possible reversal strategies. J Allergy Clin Immunol 2020;145:1355-56. DOI: 10.1016/j.jaci.2020.02.022

Pietrobon, AJ, Teixeira, F, Sato, MN. Inmunosennescense and inflammaging: Risk factors of severe COVID-19 in older people. Front Immunol 2020;11. https://doi.org/10.3389/fimmu.2020.579220

Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016;3:237-261. DOI: https://doi.org/10.1146/annurev-virology-110615-042301

Millet, J, Whittaker, G. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015;202:120-134. DOI: 10.1016/j.virusres.2014.11.021

Zhu, Z, Zhang, Z, Chen, W, et al. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infect Genet Evol 2018;61:183-184. DOI: https://doi.org/10.1016/j.meegid.2018.03.028

Walls, AC, Park, YJ, Tortorici, MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-292. DOI: 10.1016/j.cell.2020.02.058

Yan, R, Zhang, Y, Li, Y, Xia, L, Guo, Y, Zhuo, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Sci 2020;367:1444-1448.

Prabakaran, P, Xiaodong X, Dimitrov, D. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem Biophys Res Commun 2004;314:235-241.

Collado, VM, Porras, R, Cutuli, M. T, et al. El sistema inmune innato I: sus mecanismos. Rev Complut Cienc Vet 2008;2:1-16.

Wu, A, Peng, Y, Huang, B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020;27:325-328. DOI: https://doi.org/10.1016/j.chom.2020.02.001

Yang, Y, Peng, F, Wang, R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020;109. DOI: https://doi.org/10.1016/j.jaut.2020.102434

Bashirova, A, Geijtenbeek, T, van Duijnhoven, G, et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC- SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 2020;193(6):671-678. DOI: 10.1084/jem.193.6.671

Suárez, A, Villegas, C. Características y especialización de la respuesta inmunitaria en la COVID-19. Rev Fac Med 2020;63:1-12. DOI: http://doi.org/10.22201/fm.24484865e.2020.63.4.02

Vabret, N, Britton, G, Gruber, C, et al. Immunology of COVID-19: current state of the science. Immun 2020;52:910-941. DOI: 10.1016/j.immuni.2020.05.002

Singh, Y, Gupta, G, Satija, S et al. COVID-19 transmission through host cell directed network of GPCR. Drug Dev Res. 2020;81:647-649. DOI: 10.1002/ddr.21674

Villa, MI, López, E. Alteraciones hematológicas en COVID-19. N 2020;18(35):73-77.

Ruan, Q, Yang, K, Wang, W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-848. DOI: 10.1007/s00134-020-05991-x

Qu, R, Ling, Y, Zhang, YH, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol 2020;92:1533-1541. DOI: https://doi.org/10.1002/jmv.25767

Cheng, L, Li, H, Li, L et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal 2020;34. DOI: https://doi.org/10.1002/jcla.23618

Fan, BE, Chong V, Chan, S, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020;95:E131-E134.

Goyal, P, Choi, JJ, Pinheiro, LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020;382:2372-2374. DOI: https://doi.org/10.1056/NEJMc2010419

Mendoza, C, García, M, Munguía, P, et al. Opciones terapéuticas en el manejo de la COVID-19 grave: una perspectiva de reumatología. Reumatol Clin 2021;17:431-436. DOI: 10.1016/j.reuma.2020.05.002

Yugueros, X. Thrombosis are one of the main complications associated with Covid-19 [Internet]. Clínic Barcelona Hospital Universitari. Institut d'Investigacions Biomèdiques August Pi i Sunyer; 2020 [citado el 23 de noviembre de 2021]. Disponible en: https://www.clinicbarcelona.org/en/news/thrombosis-are-one-of-the-main-complications-associated-with-covid-19

Merad, M, Martin, JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020;20:355-362. DOI: https://doi.org/10.1038/s41577-020-0331-4

Parra, V, Flórez, C, Romero, C. Induction of “Cytokine storm” in patients infected with SARS-CoV-2 and development of COVID-19. Does the gastrointestinal tract any relation in severity? Rev Colomb Gastroenterol 2020;35:21-29. DOI: https://doi.org/10.22516/25007440.539

Pastrian, G. Bases genéticas y moleculares del COVID-19 (SARS-CoV-2). Mecanismos de patogénesis y de respuesta inmune. Int J Odontostomat 2020;14(3):331-337.

Tanaka, T, Narazaki, M, Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6. DOI: 10.1101/cshperspect.a016295

Johnson, BZ, Stevenson, AW, Prêle, CM, et al. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020;8:101. DOI: 10.3390/biomedicines8050101

Choy, E, Rose, S. Interleukin-6 as a multifunctional regulator: inflammation, immune response, and fibrosis. J Scleroderma Relat Disord 2017;2:S1-S5. DOI: 10.5301/jsrd.5000265

Alegre, V. Vasculitis. Resumen de clase [Internet]. Universitat de València; sf [citado el 18 de noviembre de 2021]. Disponible en: https://www.uv.es/derma/CLindex/CLvasculitis/CLvasculitis.html

Flores, L. El sistema del complemento en la patogenia de las vasculitis asociadas a anticuerpos anticitoplasma de neutrófilo. Reumatol Clin 2011;7:S18-S21

Behrens, K, Alexander, WS. Cytokine control of megakaryopoiesis. Growth Factors 2018;36:89-103. DOI: 10.1080/08977194.2018.1498487

Smith, TA. Supercomputer analyzed Covid-19 and an interesting new theory has emerged [Internet] Elemental-Medium; 2020 [citado el 2 de diciembre de 2020]. Disponible en: https://elemental.medium.com/a-supercomputer-analyzed-covid-19-and-an-interesting-new-theory-has-emerged-31cb8eba9d63

Garvin, MR, Alvarez, C, Miller, JI, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 2020;9. DOI: https://doi.org/10.7554/eLife.59177

Caravaca, P, Morán, L, García, et al. Sistema renina-angiotensina-aldosterona y COVID19. Implicaciones clínicas. Rev Esp Cardiol 2020;20:27-32.

Takaoka, A, Yanai, H. Interferon signalling network in innate defence. Cell Microbiol; 2006:8:907-922. DOI: 10.1111/j.1462-5822.2006.00716.x

Randall, RE, Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008;89:1-47. DOI: 10.1099/vir.0.83391-0

Liu, T, Zhang, L, Joo, D. NF-κB signaling in inflammation. Signal Transduct Target Therapy 2017;2. DOI: https://doi.org/10.1038/sigtrans.2017.23

Mokuda, S, Tokunaga, T, Masumoto, J, et al. Angiotensin-converting enzymes 2, a SARS-CoV-2 receptor, is upregulated by interleukin 6 through STAT3 signaling in synovial tissues. J Rheumatol 2020;47:1595-1597. DOI: https://doi.org/10.3899/jrheum.200547

Wang, N, Zhan, Y, Zhu, L et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 Patients. Cell Host Microbe 2020;28:455-464. DOI: https://doi.org/10.1016/j.chom.2020.07.005

Vabret, N, Britton, G, Gruber, C, et al. Immunology of COVID-19: current state of the science. Immun 2020;52: 910-941. Disponible en: https://doi.org/10.1016/j.immuni.2020.05.002

Channappanavar, R, Fehr, AR, Vijay, R. Dysregulated type i interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016;19(2):181-93. Doi: 10.1016/j.chom.2016.01.007

Soria-Castro, R, Meneses-Preza, Y, Rodríguez, G, et al. Severe COVID-19 is marked by dysregulated serum levels of carboxypetidase A3 and serotonin. J Leukoc Biol 2021;110:1-7. DOI: http://dx.doi.org/10.1002/JLB.4HI0221-087R

Wang, F, Nie J, Wang, H. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis 2020;221:1762-69. DOI: https://doi.org/10.1093/infdis/jiaa15

Cortés, P, Regalado, AL, Montero, H, et al. Inducción de IgG’s y cadenas ligeras kappa por plata coloidal en linfocitos de cultivo. Rev Bio Cienc 2021;8:81. DOI: https://doi.org/10.15741/revbio.08.Suppl.e1172

Coutiño, EM, Pérez, RA, García, R, et al. Plata coloidal y la salud. Universalud 2010;6:56-68. Disponible en: https://www.uv.mx/msp/files/2014/07/Universalud-12.pdf

Coutiño, EM. Plata coloidal, xenobiótico, antígeno, y disruptor hormonal. Rev Educ Bioquim 2015;34:10-25.

Coutiño, EM, Ávila, L, Arroyo, O. Las nanopartículas de plata: mecanismos de entrada, toxicidad y estrés oxidativo. Rev Educ Bioquim 2017;36:39-54. www.medigraphic.com/pdfs/revedubio/reb-2017/reb172b

Gómez, DM, Urcuqui, S, Hernández, JC. Efecto inmunomodulador de nanopartículas usadas en nanomedicina. Iatreia 2016;29:445-457.

Wu, X, Nethery, R, Sabath, M, et al. Exposure to air pollution and COVID-19 mortality in the United States a nationwide cross-sectional study [Internet]. MedRxiv [citado el 17 de marzo de 2021]. Disponible en: https://doi.org/10.1101/2020.04.05.20054502

Adams, Y. Grupos sanguíneos en la susceptibilidad y gravedad de la COVID-19. Rev Cub Hematol Hemoter 2021;37:1-18.

Gómez, D, Urcuqui, S, Hernández, J. Efecto inmunomodulador de nanopartículas usadas en nanomedicina. Iatreia 2016;29:445-457. DOI: 10.17533/udea.iatreia.v29n4a06

Miller, AM. Role of IL-33 in inflammation and disease. J Inflamm 2011;8(1):1-12.

Nair, A, Soliman, A, Al Masalamani, M, et al. Clinical outcome of eosinophilia in patients with COVID-19: a controlled study. Acta Biomed 2020;91(4): e2020165. Doi: 10.23750/abm.v91i4.10564

Takahashi, T, Iwasaki, A. Sex differences in immune responses. Sci 2021; 371:347-348. DOI: 10.1126/science.abe7199

Scully, E, Haverfield, J, Ursin, R, et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 2020; 20:442-447. DOI: 10.1038/s41577-020-0348-8

Bouman, A, Jan Heineman, M, Faas, M. Sex hormones and the inmune response in humans. Hum Reprod Update 2005;11:411-423. DOI:10.1093/humupd/dmi008

Sama, I, Ravera, A, Santema, B, et al. Circulating plasma concentrations of angiotensin-converting enzyme1 ibn men and woman with heart failure and effects of renin-angiotension-aldosterone inhibitors. Eur Heart J 2020;41. DOI: https://doi.org/10.1093/eurheartj/ehaa373

Pastrian, G. Presencia y expresión del receptor ACE2 (target de SARS-CoV-2) en tejidos humanos y cavidad oral. Posibles rutas de infección en órganos orales. Int J Odontostomat 2020;14:501-507.

Barañao, RI. Hormonas sexuales y respuesta inmunológica. Bio Review 2009;13(8):24-44.

Pérez, JL, Casado, E, Corral, L, et al. COVID-19 y vitamina D. Documento de posición de la Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM). Rev Osteoporos Metab Miner 2020;12. DOI: https://dx.doi.org/10.4321/s1889-836x2020000400009

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Alergia México

Downloads