Inmunodeficiencia combinada debida a deficiencia de DOCK8. Lo que sabemos hasta ahora

Autores/as

DOI:

https://doi.org/10.29262/ram.v69i1.1104

Palabras clave:

Deficiencia de DOCK8, inmunodeficiencia combinada, hipereosinofilia, síndrome hiper-IgE, bronquiectasias, dermatitis atópica, linfopenia, autoinmunidad, infección viral, alergia alimentaria, cáncer

Resumen

La inmunodeficiencia combinada (IDC) por deficiencia de DOCK8 es un error innato de la inmunidad, caracterizado por alteración en linfocitos T y B; el espectro de manifestaciones incluye alergia, autoinmunidad, inflamación, predisposición a cáncer e infecciones recurrentes. La deficiencia de DOCK8 se puede distinguir de otras IDC o dentro del espectro de síndromes de hiper-IgE porque presenta una profunda susceptibilidad a las infecciones virales de la piel, con cánceres de piel asociados y alergias alimentarias graves. El locus subtelomérico 9p24.3, donde se ubica DOCK8, incluye numerosos elementos repetitivos de secuencia que predisponen a la generación de grandes deleciones de la línea germinal, así como a la reparación del ADN somático, mediada por recombinación. La producción residual de la proteína DOCK8 contribuye al fenotipo variable de la enfermedad. Las infecciones virales graves de la piel y la vasculopatía asociada a virus de la varicela Zóster (VVZ) reflejan una función importante de la proteína DOCK8, que normalmente se requiere para mantener la integridad de los linfocitos a medida que las células migran a través de tejidos. La pérdida de DOCK8 provoca deficiencias inmunitarias a través de otros mecanismos, incluido un defecto de supervivencia celular. Existen alteraciones en la respuesta de las células dendríticas, lo que explica la susceptibilidad a infección por virus, así como en los linfocitos T reguladores que podrían ayudar a explicar la autoinmunidad en los pacientes. El trasplante de células hematopoyéticas pluripotenciales es por el momento el único tratamiento curativo, mejora el eccema, la alergia y la susceptibilidad a infecciones.

Citas

Su HC, Jing H, Angelus P, Freeman AF. Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome. Immunol Rev. 2019;287(1):9-19. DOI: 10.1111/imr.12723

Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined Immunodeficiency associated with DOCK8 mutations. N England J Med. 2009;361(21):2046-2055. DOI: 10.1056/NEJMoa0905506

Zhang Q, Davis J, Dove C, Su H. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers. 2010;29(3-4):131-139. DOI: 10.3233/DMA-2010-0737

Nishikimi A, Kukimoto-Niino M, Yokoyama S, Fukui Y. Immune regulatory functions of DOCK family proteins in health and disease. Exp Cell Res. 2013;319(15):2343-2349. DOI: 10.1016/j.yexcr.2013.07.024

Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: Insights into pathophysiology, clinical features and management. Clin Immunol. 2017;181:75-82. DOI: 10.1016/j.clim.2017.06.003

LASID Registry [Internet]. Brasil: General statistic; 2022. Disponible en: https://lasidregistry.org/view/statistics/general/2022-02

The United States Immunodeficiency Network [Internet]. Registry-Reported Statistics; 2022. Disponible en: https://usidnet.org/registry-data/stats-registry-enrollment/

Haskologlu S, Kostel-Bal S, Islamoglu C, Aytekin C, Guner S, Sevinc S, et al. Clinical, immunological features and follow up of 20 patients with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Allergy Immunol. 2020;31(5):515-527. DOI: 10.1111/pai.13236

Mandola AB, Levy J, Nahum A, Hadad N, Levy R, Rylova A, et al. Neutrophil functions in immunodeficiency due to DOCK8 deficiency. Immunological Investigations. 2019;48(4):431-439. DOI: 10.1080/08820139.2019.1567533

Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nature Immunology. 2012;13(6):612-620. DOI: 10.1038/ni.2305

Randall KL, Lambe T, Goodnow CC, Cornall RJ. The essential role of DOCK8 in humoral immunity. Dis Markers. 2010;29(3-4):141-150. DOI: 10.3233/DMA-2010-0739

Janssen E, Wilkie H, Geha RS. Macabre TH2 skewing in DOCK8 deficiency. J Allergy Clin Immunol. 2021;148(1):73-75. DOI: 10.1016/j.jaci.2021.02.025

Venegas-Montoya E, Staines-Boone AT, Sánchez-Sánchez LM, García-Campos JA, Córdova-Gurrola RA, Salazar-Galvez Y, et al. Case report: DOCK8 deficiency without hyper-IgE in a child with a large deletion. Front Pediatr. 2021;9:635322. DOI: 10.3389/fped.2021.635322

Chen Y, Chen Y, Yin W, Han H, Miller H, Li J, et al. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol. 2021;109(2):383-394. DOI: 10.1002/JLB.1MR0520-221RR

Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2015;136:402-412.

Werner M, Jumaa H. DOCKing innate to adaptive signaling for persistent antibody production. Nature Immunoly. 2012;13(6):525-526. DOI: 10.1038/ni.2317

Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, et al. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. Journal of Clinical Investigation. 2016;126(10):3837-3851. DOI: 10.1172/JCI85774

Keles S, Jabara HH, Reisli I, McDonald DR, Barlan I, Hanna-Wakim R, et al. Plasmacytoid dendritic cell depletion in DOCK8 deficiency: Rescue of severe herpetic infections with IFN- 2b therapy. J Allergy C. 2014 Jun;133(6):1753-1755. DOI: 10.1016/j.jaci.2014.03.032

Zhang Q, Jing H, Su HC. Recent advances in DOCK8 immunodeficiency syndrome. J Clin Immunol. 2016;36(5):441-449. DOI: 10.1007/s10875-016-0296-z

Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol. 2017;14(5):406-411. DOI: 10.1038/cmi.2017.9

Broides A, Mandola AB, Levy J, Yerushalmi B, Pinsk V, Eldan M, et al. The clinical and laboratory spectrum of dedicator of cytokinesis 8 immunodeficiency syndrome in patients with a unique mutation. Immunol Res. 2017;65(3):651-657. DOI: 10.1007/s12026-016-8883-x

Eken A, Cansever M, Okus FZ, Erdem S, Nain E, Azizoglu ZB, et al. ILC3 deficiency and generalized ILC abnormalities in DOCK8‐deficient patients. Allergy. 2020;75(4):921-932. DOI: 10.1111/all.14081

Su HC. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr Opin Allergy Clin Immunol. 2010;10(6):515-520. DOI: 10.1097/ACI.0b013e32833fd718

Pichard DC, Freeman AF, Cowen EW. Primary immunodeficiency update. J Am Acad Dermatol. 2015;73(3):355-364. DOI: 10.1016/j.jaad.2015.01.055

Lehman H, Gordon C. The skin as a window into primary immune deficiency diseases: atopic dermatitis and chronic mucocutaneous candidiasis. J Allergy Clin Immunol Pract. 2019;7(3):788-798. DOI: 10.1016/j.jaip.2018.11.026

Chu EY, Freeman AF, Jing H, Cowen EW, Davis J, Su HC, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol. 2012;148(1):79-84. DOI: 10.1001/archdermatol.2011.262

Dimitrova D, Freeman AF. Current status of dedicator of cytokinesis-associated immunodeficiency. Dermatol Clin. 2017;35(1):11-19. DOI: 10.1016/j.det.2016.07.002

Relan M, Lehman HK. Common dermatologic manifestations of primary immune deficiencies. Curr Allergy Asthma Rep. 2014;14(12):480. DOI: 10.1007/s11882-014-0480-2

Al-Herz W, Zainal M, Nanda A. A prospective survey of skin manifestations in children with inborn errors of immunity from a national registry over 17 years. Front Immunol. 2021;12:751469. DOI: 10.3389/fimmu.2021.751469

Yamamura K, Uruno T, Shiraishi A, Tanaka Y, Ushijima M, Nakahara T, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nature Commun. 2017;8(1):13946. DOI: 10.1038/ncomms13946

Jacob M, Bin Khalaf D, Alhissi S, Arnout R, Alsaud B, Al-Mousa H, et al. Quantitative profiling of cytokines and chemokines in DOCK8-deficient and atopic dermatitis patients. Allergy. 2019;74(2):370-379. DOI: 10.1111/all.13610

Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nature Rev Immunol. 2016;16(6):353-366. DOI: 10.1038/nri.2016.48

Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, García JA, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med. 2014;211(13):2549-266. DOI: 10.1084/jem.20141307

Lehman H. Skin manifestations of primary immune deficiency. Clin Rev Allergy Immunol. 2014;46(2):112-119. DOI: 10.1007/s12016-013-8377-8

Wu J, Hong L, Chen TX. Clinical manifestation of hyper IgE syndrome including otitis media. Curr Allergy Asthma Repo. 2018;18(10):51. DOI: 10.1007/s11882-018-0806-6

Freeman AF, Milner JD. The child with elevated IgE and infection susceptibility. Curr Allergy Asthma Rep. 2020;20(11):65. DOI: 10.1007/s11882-020-00964-y

Jouanguy E, Béziat V, Mogensen TH, Casanova JL, Tangye SG, Zhang SY. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. 2020;62:106-122. DOI: 10.1016/j.coi.2020.01.004

Leiding JW, Holland SM. Warts and all: human papillomavirus in primary immunodeficiencies. J Allergy Clin Immunol. 2012;130(5):1030-1048. DOI: 10.1016/j.jaci.2012.07.049

Villanueva JCMM, Chan KW, Ong RC, Andaya AG, Lau YL, van Zelm MC, et al. Hyper IgE syndrome associated with warts: a first case of dedicator of cytokinesis 8 deficiency in the Philippines. Front Pediatr. 2020;8:604725. DOI: 10.3389/fped.2020.604725

Yang J, Liu Y. Autosomal recessive hyper-IgE syndrome caused by DOCK8 gene mutation with new clinical features: a case report. BMC Neurology. 2021;21(1):288. DOI: 10.1186/S12883-021-02324-3

Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. Lancet Infect Dis. 2013;13(10):877-888. DOI: 10.1016/S1473-3099(13)70109-9

Sanal O, Jing H, Ozgur T, Ayvaz D, Strauss-Albee DM, Ersoy-Evans S, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32(4):698-708. DOI: 10.1007/s10875-012-9664-5

Saghafi S, Pourpak Z, Nussbaumer F, Fazlollahi MR, Houshmand M, Hamidieh AA, et al. DOCK8 deficiency in six Iranian patients. Clin Case Rep. 2016;4(6):593-600. DOI: 10.1002/ccr3.574

Shah T, Cale C, Hadzic N, Jones A. Dedicator of cytokinesis 8 deficiency: a predisposition to sclerosing cholangitis. Clin Immunol. 2014;155(1):71-73. DOI: 10.1016/j.clim.2014.09.001

Ben-Yakov G, Sharma D, Cho MH, Shah NN, Hickstein D, Urban A, et al. Cryptosporidium infection in dedicator of cytokinesis 8 (DOCK 8) deficiency. J Allergy Clin Immunol Pract. 2020;8(10):3663-3666.e1. DOI: 10.1016/j.jaip.2020.06.021

Saettini F, Fazio G, Moratto D, Galbiati M, Zucchini N, Ippolito D, et al. Case report: Hypomorphic function and somatic reversion in DOCK8 deficiency in one patient with two novel variants and sclerosing cholangitis. Font Immunol. 2021;12:573487. DOI: 10.3389/fimmu.2021.673487.

Raoof S, Bondalapati P, Vydyula R, Ryu JH, Gupta N, Raoof S, et al. Cystic lung diseases. Chest. 2016;150(4):945-965. DOI: 10.1016/j.chest.2016.04.026

Freeman AF, Olivier KN. Hyper-IgE syndromes and the lung. Clin Chest Med. 2016;37(3):557-567. DOI: 10.1016/j.ccm.2016.04.016

Lee EY, Vargas SO, Gaffin JM, Chou J, Park HJ, Winant AJ. Thoracic multidetector computed tomography findings of dedicator of cytokinesis 8 deficiency in children. J Thorac Imaging. 2021;36(5):304-309. DOI: 10.1097/RTI.0000000000000587

Aydin ÖF, Anlar B. Neurological manifestations of primary immunodeficiency diseases. Clin Pediatr. 2018;57(7):761-774. DOI: 10.1177/0009922817737083

Rodrigues F, Graham Davies E, Harrison P, McLauchlin J, Karani J, Portmann B, et al. Liver disease in children with primary immunodeficiencies. J Pediatr. 2004;145(3):333-339. DOI: 10.1016/j.jpeds.2004.05.037

Papa R, Penco F, Volpi S, Gattorno M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol. 2021;11:604206. DOI: 10.3389/fimmu.2020.604206

Al Mutairi M, Al-Mousa H, AlSaud B, Hawwari A, AlJoufan M, AlWesaibi A, et al. Grave aortic aneurysmal dilatation in DOCK8 deficiency. Mod Rheumatol. 2014;24(4):690-693. DOI: 10.3109/14397595.2013.874735

AlKhater SA. CNS vasculitis and stroke as a complication of DOCK8 deficiency: a case report. BMC Neurology. 2016;16(1):54. DOI: 10.1186/s12883-016-0578-3

Yamazaki-Nakashimada M, Zaltzman-Girshevich S, García-de la Puente S, De León-Bojorge B, Espinosa-Padilla S, Sáez-de Ocariz M, et al. Hyper-IgE syndrome and autoimmunity in Mexican children. Pediatr Nephrol. 2006;21(8):1200-1205. DOI: 10.1007/s00467-006-0178-3

Jouhadi Z, Khadir K, Ailal F, Bouayad K, Nadifi S, Engelhardt KR, et al. Ten-year follow-up of a DOCK8-deficient child with features of systemic lupus erythematosus. Pediatrics. 2014;134(5):e1458-e1463. DOI: 10.1542/peds.2013-1383.

Shiozawa S, Tsumiyama K, Miyazaki Y, Uto K, Sakurai K, Nakashima T, et al. DOCK8-expressing T follicular helper cells newly generated beyond self-organized criticality cause systemic lupus erythematosus. iScience. 2022;25(1):103537. DOI: 10.1016/j.isci.2021.103537

Seo E, Lee BH, Lee JH, Park YS, Im HJ, Lee J. Hematopoietic stem cell transplantation in an infant with dedicator of cytokinesis 8 (DOCK8) deficiency associated with systemic lupus erythematosus. Medicine (Baltimore). 2021;100(13):e20866. DOI: 10.1097/MD.0000000000020866

Takahashi K, Kohno T, Ajima R, Sasaki H, Minna JD, Fujiwara T, et al. Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer. Int J Oncol. 2006;28(2):321-328. DOI:10.3892/ijo.28.2.321

Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J. Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer. 2007;46(11):1000-1010. DOI: 10.1002/gcc.20485.

Kelaidi C, Tzotzola V, Polychronopoulou S. The paradigm of hematological malignant versus non-malignant manifestations, driven by primary immunodeficiencies: a complex interplay. Fam Cancer. 2021;20(4):363-380. DOI: 10.1007/s10689-021-00266-w

Cekic S, Metin A, Aytekin C, Edeer-Karaca N, Baris S, Karali Y, et al. The evaluation of malignancies in Turkish primary immunodeficiency patients; a multicenter study. Pediatr Allergy Immunol. 2020;31(5):528-536. DOI: 10.1111/pai.13231

Kuşkonmaz B, Ayvaz D, Barış S, Ünal Ş, Tezcan İ, Uçkan D. Acute myeloid leukemia in a child with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Blood Cancer. 2017;64(12):e26695. DOI: 10.1002/pbc.26695

Rubio‐González B, Frieden IJ, McCalmont TH, Dorsey M, Funk T, Pincus LB. Folliculotropic mycosis fungoides driven by DOCK8 immunodeficiency syndrome. Pediatr Dermatol. 2021;38(1):229-232. DOI: 10.1111/pde.14424

Dimitriades VR, Devlin V, Pittaluga S, Su HC, Holland SM, Wilson W, et al. DOCK 8 deficiency, EBV+ lymphomatoid granulomatosis, and intrafamilial variation in presentation. Front Pediatr. 2017;5:38. DOI: 10.3389/fped.2017.00038

Roschewski M, Wilson WH. Lymphomatoid granulomatosis. Cancer J. 2012;18(5):469-474. DOI: 10.1097/PPO.0b013e31826c5e19

Buchbinder D, Kirov I, Danielson J, Shah NN, Freeman AF, Chavan RS, et al. Compound heterozygous DOCK8 mutations in a patient with B lymphoblastic leukemia and EBV-associated diffuse large B cell lymphoma. J Clin Immunol. 2019;39(6):592-595. DOI: 10.1007/s10875-019-00663-y

Roschewski M, Wilson WH. Lymphomatoid granulomatosis. Cancer J. 2012 Sep;18(5):469-474. DOI: 10.1097/PPO.0b013e31826c5e19

Kuriyama S, Majima Y, Egawa Y, Suzuki Y, Moriki T, Tokura Y. Cutaneous lymphomatoid granulomatosis with long-term absence of lung involvement. J Dermatol. 2019;46(2):e69-e70. DOI: 10.1111/1346-8138.14548

Melani C, Jaffe ES, Wilson WH. Pathobiology and treatment of lymphomatoid granulomatosis, a rare EBV-driven disorder. Blood. 2020;135(16):1344-1352. DOI: 10.1182/blood.2019000933

Dunleavy K, Roschewski M, Wilson WH. Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep. 2012;7(3):208-215. DOI: 10.1007/s11899-012-0132-3

Aydin-Goker ET, Cagdas D, Bajin IY, Kukul MG, Aytekin ES, Orhan D, et al. Multicentric Castleman disease in a DOCK8‐deficient patient with Orf virus infection. Pediatr Allergy Immunol. 2022;33(1):e13666. DOI: 10.1111/pai.13666

Ma CS, Tangye SG. Flow cytometric-based analysis of defects in lymphocyte differentiation and function due to inborn errors of immunity. Front Immunol. 2019;10:2108. DOI: 10.3389/fimmu.2019.02108

Okamoto K, Morio T. Inborn errors of immunity with eosinophilia. Allergol Int. 2021;70(4):415-420. DOI: 10.1016/j.alit.2021.08.008

Meshaal SS, el Hawary RE, Eldash A, Grimbacher B, Camacho-Ordonez N, Abd Elaziz DS, et al. Diagnosis of DOCK8 deficiency using flow cytometry biomarkers: an Egyptian center experience. Clin Immunol. 2018;195:36-44. DOI: 10.1016/j.clim.2018.07.011

Janssen E, Tsitsikov E, Al-Herz W, Lefranc G, Megarbane A, Dasouki M, et al. Flow cytometry biomarkers distinguish DOCK8 deficiency from severe atopic dermatitis. Clin Immunol. 2014;150(2):220-224. DOI: 10.1016/j.clim.2013.12.006.

Renner ED, Puck JM, Holland SM, Schmitt M, Weiss M, Frosch M, et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr. 2004;144(1):93-99. DOI: 10.1016/S0022-3476(03)00449-9

Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, López-Herrera G, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289-1302. DOI: 10.1016/j.jaci.2009.10.038

Dedicator of cytokinesis 8; DOCK8 [Internet]. Online Mendelian Inheritance in Man; c2022. Disponible en: https://www.omim.org/entry/611432?search=dock8&highlight=dock8

e!Ensembl [Internet]. Transcript: ENST00000432829.7 DOCK8-204; 2022. Disponible en: https://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000107099;r=9:214854-465259;t=ENST00000432829

Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol. 2020;32(1):5-15. DOI: 10.1093/intimm/dxz067

Hara S, Kiyokawa E, Iemura S, Natsume T, Wassmer T, Cullen PJ, et al. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent Mannose 6-phosphate receptor transport. Mol Biol Cell. 2008;19(9):3823-3835. DOI: 10.1091/mbc.E08-03-0314

Côté JF, Motoyama AB, Bush JA, Vuori K. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol. 2005;7(8):797-807. DOI: 10.1038/ncb1280

Yousefnezhad S, Gharesouran J, Ghafouri-Fard S, Hosseinzadeh H, Ahmadian-Heris J, Jafari-Rouhi AH, et al. DOCK8-related immunodeficiency syndrome (DIDS): report of novel mutations in Iranian patients. J Mol Neurosci. 2021;71(12):2456-2461. DOI: 10.1007/s12031-021-01843-5

Jing H, Zhang Q, Zhang Y, Hill BJ, Dove CG, Gelfand EW, et al. Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. J Allergy Clin Immunol. 2014;133(6):1667-1675. DOI: 10.1016/j.jaci.2014.03.025

Alsum Z, Hawwari A, Alsmadi O, Al-Hissi S, Borrero E, Abu-staiteh A, et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-like deficient patients: single center experience of twenty-five patients. J Clin Immunol. 2013;33(1):55-67. DOI: 10.1007/s10875-012-9769-x

Kienzler AK, van Schouwenburg PA, Taylor J, Marwah I, Sharma RU, Noakes C, et al. Hypomorphic function and somatic reversion of DOCK8 cause combined immunodeficiency without hyper-IgE. Clin Immunol. 2016;163:17-21. DOI: 10.1016/j.clim.2015.12.003

Burbank AJ, Shah SN, Montgomery M, Peden D, Tarrant TK, Weimer ET. Clinically focused exome sequencing identifies a homozygous mutation that confers DOCK8 deficiency. Pediatr Allergy Immunol. 2016;27(1):96-98. DOI: 10.1111/pai.12451

Al-Kzayer LFY, Al-Aradi HMH, Shigemura T, Sano K, Tanaka M, Hamada M, et al. DOCK8 mutation diagnosed using whole-exome sequencing of the dried blood spot-derived DNA: a case report of an Iraqi girl diagnosed in Japan. BMC Med Genet. 2019;20(1):114. DOI: 10.1186/s12881-019-0837-4

Ponsford MJ, Klocperk A, Pulvirenti F, Dalm VASH, Milota T, Cinetto F, et al. Hyper-IgE in the allergy clinic--when is it primary immunodeficiency? Allergy. 2018;73(11):2122-2136. DOI: 10.1111/all.13578

Tay TR, Bosco J, Aumann H, O’Hehir R, Hew M. Elevated total serum immunoglobulin E (> 1000 IU/mL): implications? Intern Med J. 2016;46(7):846-849. DOI: 10.1111/imj.13073.

Frey-Jakobs S, Hartberger JM, Fliegauf M, Bossen C, Wehmeyer ML, Neubauer JC, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol. 2018;3(24):eaat4941. DOI: 10.1126/sciimmunol.aat4941

Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. DOI: 10.1038/s41572-018-0001-z

Castagnoli R, Lougaris V, Giardino G, Volpi S, Leonardi L, la Torre F, et al. Inborn errors of immunity with atopic phenotypes: a practical guide for allergists. World Allergy Organ J. 2021;14(2):100513. DOI: 10.1016/j.waojou.2021.100513

Al‐Shaikhly T, Ochs HD. Hyper IgE syndromes: clinical and molecular characteristics. Immunol Cell Biol. 2019;97(4):368-379. DOI: 10.1111/imcb.12209

Papan C, Hagl B, Heinz V, Albert MH, Ehrt O, Sawalle-Belohradsky J, et al. Beneficial IFN-treatment of tumorous herpes simplex blepharoconjunctivitis in dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2014;133(5):1456-1458. DOI: 10.1016/j.jaci.2014.02.008

Al-Zahrani D, Raddadi A, Massaad M, Keles S, Jabara HH, Chatila TA, et al. Successful interferon-alpha 2b therapy for unremitting warts in a patient with DOCK8 deficiency. Clin Immunol. 2014;153(1):104-108. DOI: 10.1016/j.clim.2014.04.005

Sobh A, Bonilla FA. Vaccination in primary immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(6):1066-1075. DOI: 10.1016/j.jaip.2016.09.012

Gomes N, Miranda J, Lopes S, Carneiro-Leão L, Torres-Costa J, Baudrier T, et al. Omalizumab in the treatment of hyper-IgE syndrome: 2 case reports. J Investig Allergol Clin Immunol. 2020;30(3):191-192. DOI: 10.18176/jiaci.0469

Ollech A, Mashiah J, Lev A, Simon AJ, Somech R, Adam E, et al. Treatment options for DOCK8 deficiency‐related severe dermatitis. J Dermatol. 2021;48(9):1386-1393. DOI: 10.1111/1346-8138.15955

Albert MH, Freeman AF. Wiskott-Aldrich Syndrome (WAS) and dedicator of cytokinesis 8- (DOCK8) deficiency. Front Pediatr. 2019;7:451. DOI: 10.3389/fped.2019.00451

Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency – conventional and emerging indications. Expert Rev Clin Immunol. 2018;14(2):103-114. DOI: 10.1080/1744666X.2018.1424627

Al Shekaili L, Sheikh F, Al Gazlan S, Al Dhekri H, Al Mousa H, Al Ghonaium A, et al. Novel mutation in DOCK8-HIES with severe phenotype and successful transplantation. Clin Immunol. 2017;178:39-44. DOI: 10.1016/j.clim.2016.08.002

Happel CS, Stone KD, Freeman AF, Shah NN, Wang A, Lyons JJ, et al. Food allergies can persist after myeloablative hematopoietic stem cell transplantation in dedicator of cytokinesis 8–deficient patients. J Allergy Clin Immunol. 2016;137(6):1895-1898.e5. DOI: 10.1016/j.jaci.2015.11.017

Al-Herz W, Chu JI, van der Spek J, Raghupathy R, Massaad MJ, Keles S, et al. Hematopoietic stem cell transplantation outcomes for 11 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2016;138(3):852-859.e3. DOI: 10.1016/j.jaci.2016.02.022

Vaseghi-Shanjani M, Smith KL, Sara RJ, Modi BP, Branch A, Sharma M, et al. Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol. 2021;148(5):1130-1139. DOI: 10.1016/j.jaci.2021.08.008

Cagdas D, Halacli SO, Tan C, Esenboga S, Karaatmaca B, Cetinkaya PG, et al. Diversity in serine/threonine protein kinase-4 deficiency and review of the literature. J Allergy Clin Immunol Pract. 2021;9(10):3752-3766.e4. DOI: 10.1016/j.jaip.2021.05.032

Zhang Q, Boisson B, Béziat V, Puel A, Casanova JL. Human hyper-IgE syndrome: singular or plural? Mammalian Genome. 2018;29(7-8):603-617. DOI: 10.1007/s00335-018-9767-2

Kolukisa B, Baser D, Akcam B, Danielson J, Bilgic Eltan S, Haliloglu Y, et al. Evolution and long‐term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004-1019. DOI: 10.1111/all.15010

Guo W, Feng X, Yang M, Shangguan Y, Shi P, Wang S, et al. Mycobacterium intracellulare infection associated with TYK2 deficiency: a case report and review of the literature. Infect Drug Resist. 2020;13:4347-4353. DOI: 10.2147/IDR.S279438

Descargas

Publicado

2022-07-01

Número

Sección

Inmunología