Importancia de la autoinmunidad inducida por SARS-CoV-2 y desarrollo de enfermedades autoinmunes post-vacunación
PDF
XML
HTML

Palabras clave

COVID-19
Gravedad
Autoinmunidad
Vacunación
Mimetismo molecular

Cómo citar

Importancia de la autoinmunidad inducida por SARS-CoV-2 y desarrollo de enfermedades autoinmunes post-vacunación. (2022). Revista Alergia México, 69(2), 78-88. https://doi.org/10.29262/ram.v69i2.1153

Resumen

El SARS-CoV-2, un virus perteneciente a la gran familia de los coronavirus despertó gran interés después del brote de la nueva cepa reportada en 2019, en Wuhan, China. Las manifestaciones clínicas son variables: desde enfermedad con curación espontánea hasta síndrome de dificultad respiratoria aguda, con alteraciones clínicas sistémicas (COVID-19), donde el sistema inmunitario tiene participación importante en la fisiopatología de la enfermedad y su gravedad. Diversos estudios demuestran la prevalencia de algunos marcadores autoinmunes, lo que sugiere que pueden conducir a estados de autoinmunidad. La estrategia más importante a nivel mundial para proteger a la población fue el desarrollo de vacunas para inducir inmunidad frente al COVID-19 grave; sin embargo, se ha demostrado que tienen la capacidad de producir estados autoinmunitarios en un pequeño porcentaje de la población; no obstante, siguen siendo la mejor estrategia de tratamiento. El objetivo de esta revisión es mostrar el panorama actual de los mecanismos de autoinmunidad inducidos por SARS-CoV-2 y la post-vacunación, para una mejor comprensión e identificación en la población. Se revisaron las publicaciones de 2019 a 2022 en PubMed como fuente principal de búsqueda.

PDF
XML
HTML

Referencias

Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020; 52(11):549-557. doi: 10.1152/physiolgenomics.

Hopfer H, Herzig MC, Gosert R, et al. Hunting coronavirus by transmission electron microscopy - a guide to SARS-CoV-2-associated ultrastructural pathology in COVID-19 tissues. Histopathology. 2021;78(3):358-370. doi: 10.1111/his.14264.

Ehrenfeld M, Tincani A, Andreoli L, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. doi: 10.1016/j.autrev.2020.102597.

Chen, Y, Xu Z., Wang P, et al. New‐onset autoimmune phenomena post‐COVID‐19 vaccination. Immunology. 2022;165(4):386-401. doi.org/10.1111/imm.13443.

Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021;384(15):1412-1423. doi: 10.1056/NEJMoa2101765.

Fujinami RS, Von Herath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006 ;19(1):80-94. doi: 10.1128/CMR.19.1.80-94.2006.

Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. AutoimmunRev.2021; 20(4), 102792. https://doi.org/10.1016/j.autrev.2021.102792.

Gandhi RT, Lynch JB, Del Rio C. Mild or moderate Covid-19. N Engl J Med. 2020; 383(18):1757-1766. doi.org/10.1056/NEJMcp2009249.

Arandia G, Jaime A, Gabriela L. SARS-CoV-2: structure, replication and physiopathological mechanism related to COVID-19. Gac Med Bol. 2020; 43(2): 170-178.

Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 725:138277-18.doi.org/10.1016/j.scitotenv.2020.138277.

Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022; 270–284 doi.org/10.1038/s41579-022-00713-0.

D’Amico F, Baumgart DC, Danese S, Peyrin L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin Gastroenterol Hepatol.2020; 18(8): 1663-72. doi.org/10.1016/j.cgh.2020.04.001.

Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288(2):192–206. doi.org/10.1111/ joim.13091.

Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi: 10.3390/v11080762.

Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol. 2009; 155(1):1-15.doi: 10.1111/j.1365-2249.2008.03834.x.

Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100-123. doi.org/10.1016/j.jaut.2018.10.012.

Rainel SR, Ernesto SR, Néstor RH. La respuesta inmune antiviral. Rev. Cubana Med Gen Integr.1998; 14(1), 93-98.

Salle V. Coronavirus-induced autoimmunity. Clin Immunol. 2021;226:108694. doi: 10.1016/j.clim.2021.108694.

Kanduc D, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020;68(5): 310–313. doi.org/10.1007/s12026-020-09152-6.

Munavalli GG, Guthridge R, Knutsen-Larson S, Brodsky A, Matthew E, Landau M. "COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and treatment". Arch Dermatol Res. 2022;314(1):1-15. doi.org/10.1007/s00403-021-02190-6.

Woodruff MC, Ramonell RP, Saini AS, et al. Relaxed peripheral tolerance drives broad de novo autoreactivity in severe COVID 19. MedRxiv. 2021;10.21.20216192. doi:org/10.1101/2020.10.21.20216192.

Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Tthromboslysis. 2020; 50(3), 580-586. //doi.org/10.1007/s11239-020-02182-9.

Xiao M, Zhang Y, Zhang S, et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol. 2020; 72(12): 1998-2004. doi.org/10.1002/art.41425.

Sanz JM, Lahoz AG, Martín RO. Role of the inmune system in SARS-CoV-2 infection: immunopathology of COVID-19. Medicine (Madr). 2021;13(33):1917-1931.https://doi:10.1016/j.med.2021.05.005.

Lin YS, Lin CF, Fang YT, et al. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin Exp Immunol. 2005;141(3):500-508.doi.org/10.1111/j.1365-2249.2005. 02864.x.

Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?. Autoimmun Rev. 2020; 19(5):102524. doi.org/10.1016/j.autrev.2020.102524.

Kichloo A, Aljadah M, Albosta M, Wani F, Singh J, Solanki S. COVID-19 and acute lupus pneumonitis: diagnostic and treatment dilemma. J Investig Med High Impact Case Rep. 2020;8:2324709620933438. doi.org/10.1177/2324709620933438.

Gracia-Ramos AE, Saavedra-Salinas MA. Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatol Int. 2021; 41(4):799–809. doi.org/10.1007/s00296-021-04794-7.

Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021; 33(2):155–162. doi.org/10.1097/BOR.0000000000000776.

Gigli GL, Vogrig A, Nilo A, et al. HLA and immunological features of SARS-CoV-2-induced Guillain-Barré syndrome. Neurol Sci. 2020;41(12):3391-3394. doi.org/10.1007/s10072-020-04787-7.

Caress JB, Castoro RJ, Simmons Z, et al. COVID-19-associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve. 2020;62(4):485-491. doi.org/10.1002/mus.27024.

Assiri SA, Althaqafi RMM, Alswat K, et al. Post COVID-19 Vaccination-Associated Neurological Complications. Neuropsychiatr Dis Treat. 2022;18:137-154. doi:10.2147/NDT.S343438.

Hussain A, Rafeeq H, Asif HM, et al. Current scenario of COVID-19 vaccinations and immune response along with antibody titer in vaccinated inhabitants of different countries. Int Immunopharmacol. 2021;99:108050. doi:10.1016/j.intimp.2021.108050.

DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun. 2021;538:211-217. doi:10.1016/j.bbrc.2020.10.060.

Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;373:n1088. doi:10.1136/bmj.n1088.

Casas I, Mena G. La vacunación de la COVID-19 [The COVID-19 vaccination]. Med Clin (Barc). 2021;156(10):500-502. doi:10.1016/j.medcli.2021.03.001.

Food and Drug Administration. Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials [Internet]; Sep 2007[Consultado 13 de julio de 2022]. Disponible en: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/toxicity-grading-scale-healthy-adult-and-adolescent-volunteers-enrolled-preventive-vaccine-clinical.

Chaparro Mérida NA, Moreno Samper D, Franco Lacato AO. Seguridad de las vacunas contra la COVID-19. Rev Perú Med Exp Salud Pública. 2021;38(4):634-42. doi:10.17843/rpmesp.2021.384.9308.

Olivieri B, Betterle C, Zanoni G. Vaccinations and Autoimmune Diseases. Vaccines. 2021;9(8):815. Doi:10.3390/vaccines9080815.

Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: whats is the evidence? Lancet 2003;362:1659–66. doi:10.1016/S0140-6736(03)14802-7.

Shoenfeld Y, Agmon-Levin N. ‘ASIA’ – Autoinmune/inflammatory syndrome induced by adjuvants. Journal of autoimmunity. 2011;36(1):4-8. doi:10.1016/j.jaut.2010.07.003.

Jara LJ, Vera-Lastra O, Mahroum N, Pineda C, Shoenfeld Y. Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand?. Clin Rheumatol. 2022;41(5):1603-1609. doi:10.1007/s10067-022-06149-4.

World Health Organization. Immunization Safety Surveillance: Guidelines for Immunization Programme Managers on Surveillance of Adverse Events Following Immunization, 3rd ed.; WHO: Geneva, Switzerland, 2016; pp. 1–169.

Vogrig A, Janes F, Gigli GL, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 vaccination. Clinical Neurology and Neurosurgery. 2021;208:106839. doi:10.1016/j.clineuro.2021.106839.

Aye YN, Mai AS, Zhang A, et al. Acute Myocardial Infarction and Myocarditis following COVID-19 Vaccination. QJM. 2021;0:1-5. doi:10.1093/qjmed/hcab252.

Oo WM, Giri P, de Souza A. AstraZeneca COVID-19 vaccine and Guillain- Barré Syndrome in Tasmania: A causal link?. J Neuroimmunol. 2021;360:577719. doi:10.1016/j.jneuroim.2021.577719.

Mehta PR, Apap Mangion S, Benger M, et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination - A report of two UK cases. Brain Behav Immun. 2021;95:514-517. doi:10.1016/j.bbi.2021.04.006.

Guevara–Silva E, Castro–Suárez S. Escasas y probables complicaciones neurológicas de las vacunas contra el Sars-Cov-2. Rev Neuropsiquiatr. 2021;84(3):157-158. doi:10.20453/rnp.v84i3.4031.

Hsiao YT, Tsai MJ, Chen YH, Hsu CF. Acute Transverse Myelitis after COVID-19 Vaccination. Medicina (Kauneas). 2021;57(10):1010. doi:10.3390/medicina57101010.

Bolletta E, Iannetta D, Mastrofilippo V, et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J Clin Med. 2021;10(24):5960. doi:10.3390/jcm10245960.

Oonk NGM, Ettema AR, van Berghem H, de Klerk JJ, van der Vegt JPM, van der Meulen M. SARS-CoV-2 vaccine-related neurological complications. Neurol Sci. 2022;43(4):2295-2297. doi:10.1007/s10072-022-05898-z.

Bennett C, Chambers LM, Son J, Goje O. Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination. J Obstet Gynaecol Res. 2021;47(11):4077-4080. doi:10.1111/jog.14978.

Mauriello A, Scimeca M, Amelio I, et al. Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death Dis. 2021;12(8):762. doi:10.1038/s41419-021-04058-z.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Revista Alergia México