Conceptos generales de las inmunodeficiencias humorales
PubMed

Palabras clave

Inmunodeficiencias humorales
Criterios diagnósticos
Errores innatos humanos de la inmunidad

Resumen

Las inmunodeficiencias humorales (IDH) comprenden un grupo de enfermedades caracterizadas por la imposibilidad de desarrollar una respuesta inmune efectiva mediada por inmunoglobulinas. Los pacientes con IDH presentan infecciones por bacterias extracelulares encapsuladas, principalmente en el tracto respiratorio o gastrointestinal y una mayor predisposición a padecer enfermedades autoinmunes y cáncer. Algunas se originan por defectos genéticos bien definidos y en otras se desconoce la causa. Las manifestaciones clínicas de algunas IDH pueden ser tardías y el diagnóstico se apoya en pruebas de laboratorio como la concentración en suero de las inmunoglobulinas, determinación de poblaciones linfocitarias y estudios funcionales. El tratamiento de reemplazo con gammaglobulinas disminuye significativamente las infecciones graves. Para lograr un diagnóstico temprano es necesario un alto índice de sospecha y evaluar las manifestaciones clínicas y de laboratorio sugestivas de IDH. Las tecnologías de secuenciación masiva han favorecido la descripción de mutaciones en varios genes que llevan a un fenotipo clínico de IDH, con lo que se abre el camino para comprender mejor las inmunopatologías en las IDH.

 

PubMed

Referencias

Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66-81. DOI: 10.1007/s10875-020-00758-x

McCusker C, Upton J, Warrington R. Primary immunodeficiency. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):61. DOI: 10.1186/s13223-018-0290-5

Raje N, Dinakar C. Overview of immunodeficiency disorders. Immunol Allergy Clin North Am. 2015;35(4):599-623. DOI: 10.1016/j.iac.2015.07.001

Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129-143. DOI: 10.1007/s10875-017-0465-8

Picard C, Bobby-Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38(1):96-128. DOI: 10.1007/s10875-017-0464-9

Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182-S194. DOI: 10.1016/j.jaci.2009.07.053

Cooper MD, Lanier LL, Conley ME, Puck JM. Immunodeficiency disorders. Hemotology Am Soc Hematol Educ Program. 2003:314-330. DOI: 10.1182/asheducation-2003.1.314

Westh L, Mogensen TH, Dalgaard LS, Bernth-Jensen JM, Katzenstein T, Hansen AE, et al. Identification and characterization of a nationwide Danish adult common variable immunodeficiency cohort. Scand J Immunol. 2017;85(6):450-461. DOI: 10.1111/sji.12551

Subbarayan A, Colarusso G, Hughes SM, Gennery AR, Slatter M, Cant AJ, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics. 2011;127(5):810-816. DOI: 10.1542/peds.2010-3680

Fried AJ, Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev. 2009;22(3):396-414. DOI: 10.1128/CMR.00001-09

García-Prat M, Álvarez-Sierra D, Aguilo-Cucurull A, Salgado-Perandres S, Briongos-Sebastian S, Franco-Jarava C, et al. Extended immunophenotyping reference values in a healthy pediatric population. Cytometry B Clin Cytom. 2019;96(3):223-233. DOI: 10.1002/cyto.b.21728

García-Prat M, Vila-Pijoan G, Martos-Gutiérrez S, Gala-Yerga G, García-Guantes E, Martínez-Gallo M, et al. Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite™ automated turbidimetric analyzer. J Clin Lab Anal. 2018;32(6):e22420. DOI: 10.1002/jcla.22420

Berrón-Ruíz L, López-Herrera G, Ávalos-Martínez CE, Valenzuela-Ponce C, Ramírez-Sanjuán E, Santoyo-Sánchez G, et al. Variations of B cell subpopulations in peripheral blood of healthy Mexican population according to age: relevance for diagnosis of primary immunodeficiencies. Allergol Immunopathol. 2016;44(6):571-579. DOI: 10.1016/j.aller.2016.05.003

Marsh RA, Orange JS. Antibody deficiency testing for primary immunodeficiency: a practical review for the clinician. Ann Allergy Asthma Immunol. 2019;123(5):444-453. DOI: 10.1016/j.anai.2019.08.012

Parker AR, Skold M, Ramsden DB, Ocejo-Vinyals JG, López-Hoyos M, Harding S. The clinical utility of measuring IgG subclass immunoglobulins during immunological investigation for suspected primary antibody deficiencies. Lab Med. 2017;48(4):314-325. DOI: 10.1093/labmed/lmx058

Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186-1205.e1-78. DOI: 10.1016/j.jaci.2015.04.049

Notarangelo LD, Lanzi G, Peron S, Durandy A. Defects of class-switch recombination. J Allergy Clin Immunol. 2006;117(4):855-864. DOI: 10.1016/j.jaci.2006.01.043

Piatosa B, Wolska-Kusnierz B, Pac M, Siewiera K, Galkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 2010;78(6):372-381. DOI: 10.1002/cyto.b.20536

Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696-726. DOI: 10.1007/s10875-015-0201-1

Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of κ-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol. 2011;128(1):223-225.e2. DOI: 10.1016/j.jaci.2011.01.052

Van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645-655. DOI: 10.1084/jem.20060964

El-Sayed ZA, Radwan N. Newborn screening for primary immunodeficiencies: the gaps, challenges, and outlook for developing countries. Front Immunol. 2019;10:2987.

Suri D, Rawat A, Singh S. X-linked agammaglobulinemia. Indian J Pediatr. 2016;83(4):331-337.

Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore). 2006;85(4):193-202. DOI: 10.1097/01.md.0000229482.27398.ad

Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722-728. Disponible en: https://pediatrics.aappublications.org/content/9/6/722.long

Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279-290. DOI: 10.1016/0092-8674(93)90667-f

Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226-233.

Dogruel D, Serbes M, Sasihuseyinoglu AS, Yilmaz M, Altintas DU, Bisgin A. Clinical and genetic profiles of patients with X-linked agammaglobulinemia from southeast Turkey: novel mutations in BTK gene. Allergol Immunopathol (Madr). 2019;47(1):24-31. DOI: 10.1016/j.aller.2018.03.004

Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev. 2000;178(1):75-90. DOI: 10.1034/j.1600-065x.2000.17809.x

Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75(6):287-299. DOI: 10.1097/00005792-199611000-00001

Takada H, Kanegane H, Nomura A, Yamamoto K, Ihara K, Takahashi Y, et al. Female agammaglobulinemia due to the Bruton tyrosine kinase deficiency caused by extremely skewed X-chromosome inactivation. Blood. 2004;103(1):185-187. DOI: 10.1182/blood-2003-06-1964

Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221-230. DOI: 10.1006/clim.2002.5241

Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol. 2017;140(4):1191-1194 e4. DOI: 10.1016/j.jaci.2017.04.037

Aadam Z, Kechout N, Barakat A, Chan KW, Ben-Ali M, Ben-Mustapha I, et al. X-Linked agammagobulinemia in a large series of North African patients: frequency, clinical features and novel BTK mutations. J Clin Immunol. 2016;36(3):187-194. DOI: 10.1007/s10875-016-0251-z

El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12(3):100018. DOI: 10.1016/j.waojou.2019.100018

Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122(1):210-212. DOI: 10.1016/j.jaci.2008.04.044

Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318-329.

Rutkowska M, Lenart M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The number of circulating CD4+ CD25high Foxp3+ T lymphocytes is transiently elevated in the early childhood of transient hypogammaglobulinemia of infancy patients. Clin Immunol. 2011;140(3):307-310. DOI: 10.1016/j.clim.2011.04.003

Ricci G, Piccinno V, Giannetti A, Miniaci A, Specchia F, Masi M. Evolution of hypogammaglobulinemia in premature and full-term infants. Int J Immunopathol Pharmacol. 2011;24(3):721-726. DOI: 10.1177/039463201102400318

Rutkowska M, Trzyna E, Lenart M, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The elevated number of circulating regulatory T cells in patients with transient hypogammaglobulinemia of infancy is not associated with any abnormalities in the genes encoding the TGF-beta receptors. Clin Immunol. 2013;149(1):83-85. DOI: 10.1016/j.clim.2013.06.008

Cunningham-Rundles C, Fotino M, Rosina O, Peter JB. Selective IgA deficiency, IgG subclass deficiency, and the major histocompatibility complex. Clin Immunol Immunopathol. 1991;61(2 Pt 2):S61-S69. DOI: 10.1016/S0090-1229(05)80039-X

Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225-231. DOI: 10.1046/j.1365-2249.2000.01131.x

Wang Z, Yunis D, Irigoyen M, Kitchens B, Bottaro A, Alt FW, et al. Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clin Immunol. 1999;91(3):263-270. DOI: 10.1006/clim.1999.4702

Suzuki H, Kaneko H, Fukao T, Jin R, Kawamoto N, Asano T, et al. Various expression patterns of alpha1 and alpha2 genes in IgA deficiency. Allergol Int. 2009;58(1):111-117. DOI: 10.2332/allergolint.O-08-549

Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829-834. DOI: 10.1038/ng1601

Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, Pan-Hammarstrom Q, Kaartinen T, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 2009;10(2):151-161. DOI: 10.1038/gene.2008.89

Edwards E, Razvi S, Cunningham-Rundles C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol. 2004;111(1):93-97. DOI: 10.1016/j.clim.2003.12.005

Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin Exp Immunol. 1981;45(2):299-304.

Aghamohammadi A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009;29(1):130-136. DOI: 10.1007/s10875-008-9229-9

Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Nat Acad Sci U S A. 2004;101(7):1981-1986. Disponible en: https://www.pnas.org/content/101/7/1981

Janzi M, Kull I, Sjoberg R, Wan J, Melen E, Bayat N, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009;133(1):78-85. DOI: 10.1016/j.clim.2009.05.014

Zinneman HH, Kaplan AP. The association of giardiasis with reduced intestinal secretory immunoglobulin A. Am J Dig Dis. 1972;17(9):793-797. DOI: 10.1007/BF02231148

Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21(5):303-309. DOI: 10.1023/a:1012241117984

Sherkat R, Shoaei P, Parvaneh N, Babak A, Kassaian N. Selective antibody deficiency and its relation to the IgG2 and IgG3 subclass titers in recurrent respiratory infections. Iran J Immunol. 2013;10(1):55-60.

Janssen LMA, Macken T, Creemers MCW, Pruijt JFM, Eijk JJJ, de Vries E. Truly selective primary IgM deficiency is probably very rare. Clin Exp Immunol. 2018;191(2):203-11. DOI: 10.1111/cei.13065

Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36(5):490-501. DOI: 10.1007/s10875-016-0291-4

Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990-993. DOI: 10.1126/science.7679801

Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72(2):291-300. DOI: 10.1016/0092-8674(93)90668-g

Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565-575. DOI: 10.1016/s0092-8674(00)00079-9

Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98(22):12614-12619. DOI: 10.1073/pnas.221456898

Imai K, Catalan N, Plebani A, Marodi L, Sanal O, Kumaki S, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest. 2003;112(1):136-142. DOI: 10.1172/JCI18161

Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2(3):223-228.

Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, et al. Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest. 1998;102(4):853-60. DOI: 10.1038/85277

Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest. 1999;103(8):1151-1158. DOI: 10.1172/JCI5891

Lougaris V, Lanzi G, Baronio M, Gazzurelli L, Vairo D, Lorenzini T, et al. Progressive severe B cell and NK cell deficiency with T cell senescence in adult CD40L deficiency. Clin Immunol. 2018;190:11-14. DOI: 10.1016/j.clim.2018.02.008

Cabral-Marques O, Klaver S, Schimke LF, Ascendino EH, Khan TA, Pereira PV, et al. First report of the Hyper-IgM Syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol. 2014;34(2):146-156. DOI: 10.1007/s10875-013-9980-4

De Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F. CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol. 1999;29(1):367-373. DOI: 10.1002/(SICI)1521-4141(199901)29:01<367::AID-IMMU367>3.0.CO;2-4

Cabral-Marques O, Franca TT, Al-Sbiei A, Schimke LF, Khan TA, Feriotti C, et al. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-gamma. J Allergy Clin Immunol. 2018;142(5):1571-1588.e9. DOI: 10.1016/j.jaci.2018.02.026

Ferrua F, Galimberti S, Courteille V, Slatter MA, Booth C, Moshous D, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: Results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. J Allergy Clin Immunol. 2019;143(6):2238-2253. DOI: 10.1016/j.jaci.2018.12.1010

Janeway CA, Apt L, Gitlin D. Agammaglobulinemia. Trans Assoc Am Physicians. 1953;66:200-202.

Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34-48. DOI: 10.1006/clim.1999.4725

Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, de Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. 2016;53(9):575-590. DOI: 10.1136/jmedgenet-2015-103690

Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018;67(1):43-54. DOI: 10.1016/j.alit.2017.06.003

Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77-85. DOI: 10.1182/blood-2007-06-091744.

Horn J, Thon V, Bartonkova D, Salzer U, Warnatz K, Schlesier M, et al. Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workup and therapeutic strategy. Clin Immunol. 2007;122(2):156-162. DOI: 10.1016/j.clim.2006.10.002

Park MA, Li JT, Hagan JB, Maddox DE, Abraham RS. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372(9637):489-502. DOI: 10.1016/S0140-6736(08)61199-X

Venhoff N, Emmerich F, Neagu M, Salzer U, Koehn C, Driever S, et al. The role of HLA DQ2 and DQ8 in dissecting celiac-like disease in common variable immunodeficiency. J Clin Immunol. 2013;33(5):909-916. DOI: 10.1007/s10875-013-9892-3

Yong PF, Thaventhiran JED, Grimbacher B. “A rose is a rose is a rose,” but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol. 2011;111:47-107. DOI: 10.1016/B978-0-12-385991-4.00002-7

Albin S, Cunningham-Rundles C. An update on the use of immunoglobulin for the treatment of immunodeficiency disorders. Immunotherapy. 2014;6(10):1113-1126. DOI: 10.2217/imt.14.67

Gernez Y, Baker MG, Maglione PJ. Humoral immunodeficiencies: conferred risk of infections and benefits of immunoglobulin replacement therapy. Transfusion. 2018;58(Suppl 3):3056-3064. DOI: 10.1111/trf.15020.

Papadopoulou-Alataki E, Hassan A, Davies EG. Prevention of infection in children and adolescents with primary immunodeficiency disorders. Asian Pac J Allergy Immunol. 2012;30(4):249-258. Disponible en: https://www.apjai-journal.org/wp-content/uploads/2017/09/2PreventionofinfectionVol30No4December2012P249.pdf

Rudilla F, Franco-Jarava C, Martínez-Gallo M, García-Prat M, Martín-Nalda A, Rivière J, et al. Expanding the clinical and genetic spectra of primary immunodeficiency-related disorders with clinical exome sequencing: expected and unexpected findings. Front Immunol. 2019;10:2325. DOI: 10.3389/fimmu.2019.02325

Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847. DOI: 10.3389/fimmu.2017.00847

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Alergia México

Descargas

##plugins.themes.healthSciences.displayStats.noStats##