Abstract
Humoral immune deficiencies (HID) comprise a group of diseases characterized by the impossibility to develop an effective immune response mediated by immunoglobulins (Ig). Patients with HID have infections caused by capped extracellular bacteria, mainly in the respiratory and/or gastrointestinal tract, and a higher predisposition to suffer from autoimmune diseases and cancer. Some of them are caused by well-defined genetic defects, while the cause of others is unknown. The clinical manifestations of some HID may be late and the diagnosis is supported by laboratory tests, such as serum level of the Ig, determination of lymphocyte populations, and functional studies. Gamma-globulin replacement therapy significantly decreases serious infections. In order to achieve an early diagnosis, it is necessary to maintain a high index of suspicion and evaluate the clinical and laboratory manifestations that suggest HID. Mass sequencing technologies have favored the description of mutations in various genes that lead to a clinical HID phenotype; which paves the way to a better understanding of immune pathologies in HID.
References
Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66-81. DOI: 10.1007/s10875-020-00758-x
McCusker C, Upton J, Warrington R. Primary immunodeficiency. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):61. DOI: 10.1186/s13223-018-0290-5
Raje N, Dinakar C. Overview of immunodeficiency disorders. Immunol Allergy Clin North Am. 2015;35(4):599-623. DOI: 10.1016/j.iac.2015.07.001
Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129-143. DOI: 10.1007/s10875-017-0465-8
Picard C, Bobby-Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38(1):96-128. DOI: 10.1007/s10875-017-0464-9
Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182-S194. DOI: 10.1016/j.jaci.2009.07.053
Cooper MD, Lanier LL, Conley ME, Puck JM. Immunodeficiency disorders. Hemotology Am Soc Hematol Educ Program. 2003:314-330. DOI: 10.1182/asheducation-2003.1.314
Westh L, Mogensen TH, Dalgaard LS, Bernth-Jensen JM, Katzenstein T, Hansen AE, et al. Identification and characterization of a nationwide Danish adult common variable immunodeficiency cohort. Scand J Immunol. 2017;85(6):450-461. DOI: 10.1111/sji.12551
Subbarayan A, Colarusso G, Hughes SM, Gennery AR, Slatter M, Cant AJ, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics. 2011;127(5):810-816. DOI: 10.1542/peds.2010-3680
Fried AJ, Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev. 2009;22(3):396-414. DOI: 10.1128/CMR.00001-09
García-Prat M, Álvarez-Sierra D, Aguilo-Cucurull A, Salgado-Perandres S, Briongos-Sebastian S, Franco-Jarava C, et al. Extended immunophenotyping reference values in a healthy pediatric population. Cytometry B Clin Cytom. 2019;96(3):223-233. DOI: 10.1002/cyto.b.21728
García-Prat M, Vila-Pijoan G, Martos-Gutiérrez S, Gala-Yerga G, García-Guantes E, Martínez-Gallo M, et al. Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite™ automated turbidimetric analyzer. J Clin Lab Anal. 2018;32(6):e22420. DOI: 10.1002/jcla.22420
Berrón-Ruíz L, López-Herrera G, Ávalos-Martínez CE, Valenzuela-Ponce C, Ramírez-Sanjuán E, Santoyo-Sánchez G, et al. Variations of B cell subpopulations in peripheral blood of healthy Mexican population according to age: relevance for diagnosis of primary immunodeficiencies. Allergol Immunopathol. 2016;44(6):571-579. DOI: 10.1016/j.aller.2016.05.003
Marsh RA, Orange JS. Antibody deficiency testing for primary immunodeficiency: a practical review for the clinician. Ann Allergy Asthma Immunol. 2019;123(5):444-453. DOI: 10.1016/j.anai.2019.08.012
Parker AR, Skold M, Ramsden DB, Ocejo-Vinyals JG, López-Hoyos M, Harding S. The clinical utility of measuring IgG subclass immunoglobulins during immunological investigation for suspected primary antibody deficiencies. Lab Med. 2017;48(4):314-325. DOI: 10.1093/labmed/lmx058
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186-1205.e1-78. DOI: 10.1016/j.jaci.2015.04.049
Notarangelo LD, Lanzi G, Peron S, Durandy A. Defects of class-switch recombination. J Allergy Clin Immunol. 2006;117(4):855-864. DOI: 10.1016/j.jaci.2006.01.043
Piatosa B, Wolska-Kusnierz B, Pac M, Siewiera K, Galkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 2010;78(6):372-381. DOI: 10.1002/cyto.b.20536
Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696-726. DOI: 10.1007/s10875-015-0201-1
Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of κ-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol. 2011;128(1):223-225.e2. DOI: 10.1016/j.jaci.2011.01.052
Van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645-655. DOI: 10.1084/jem.20060964
El-Sayed ZA, Radwan N. Newborn screening for primary immunodeficiencies: the gaps, challenges, and outlook for developing countries. Front Immunol. 2019;10:2987.
Suri D, Rawat A, Singh S. X-linked agammaglobulinemia. Indian J Pediatr. 2016;83(4):331-337.
Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore). 2006;85(4):193-202. DOI: 10.1097/01.md.0000229482.27398.ad
Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722-728. Disponible en: https://pediatrics.aappublications.org/content/9/6/722.long
Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279-290. DOI: 10.1016/0092-8674(93)90667-f
Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226-233.
Dogruel D, Serbes M, Sasihuseyinoglu AS, Yilmaz M, Altintas DU, Bisgin A. Clinical and genetic profiles of patients with X-linked agammaglobulinemia from southeast Turkey: novel mutations in BTK gene. Allergol Immunopathol (Madr). 2019;47(1):24-31. DOI: 10.1016/j.aller.2018.03.004
Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev. 2000;178(1):75-90. DOI: 10.1034/j.1600-065x.2000.17809.x
Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75(6):287-299. DOI: 10.1097/00005792-199611000-00001
Takada H, Kanegane H, Nomura A, Yamamoto K, Ihara K, Takahashi Y, et al. Female agammaglobulinemia due to the Bruton tyrosine kinase deficiency caused by extremely skewed X-chromosome inactivation. Blood. 2004;103(1):185-187. DOI: 10.1182/blood-2003-06-1964
Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221-230. DOI: 10.1006/clim.2002.5241
Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol. 2017;140(4):1191-1194 e4. DOI: 10.1016/j.jaci.2017.04.037
Aadam Z, Kechout N, Barakat A, Chan KW, Ben-Ali M, Ben-Mustapha I, et al. X-Linked agammagobulinemia in a large series of North African patients: frequency, clinical features and novel BTK mutations. J Clin Immunol. 2016;36(3):187-194. DOI: 10.1007/s10875-016-0251-z
El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12(3):100018. DOI: 10.1016/j.waojou.2019.100018
Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122(1):210-212. DOI: 10.1016/j.jaci.2008.04.044
Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318-329.
Rutkowska M, Lenart M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The number of circulating CD4+ CD25high Foxp3+ T lymphocytes is transiently elevated in the early childhood of transient hypogammaglobulinemia of infancy patients. Clin Immunol. 2011;140(3):307-310. DOI: 10.1016/j.clim.2011.04.003
Ricci G, Piccinno V, Giannetti A, Miniaci A, Specchia F, Masi M. Evolution of hypogammaglobulinemia in premature and full-term infants. Int J Immunopathol Pharmacol. 2011;24(3):721-726. DOI: 10.1177/039463201102400318
Rutkowska M, Trzyna E, Lenart M, Szaflarska A, Pituch-Noworolska A, Kobylarz K, et al. The elevated number of circulating regulatory T cells in patients with transient hypogammaglobulinemia of infancy is not associated with any abnormalities in the genes encoding the TGF-beta receptors. Clin Immunol. 2013;149(1):83-85. DOI: 10.1016/j.clim.2013.06.008
Cunningham-Rundles C, Fotino M, Rosina O, Peter JB. Selective IgA deficiency, IgG subclass deficiency, and the major histocompatibility complex. Clin Immunol Immunopathol. 1991;61(2 Pt 2):S61-S69. DOI: 10.1016/S0090-1229(05)80039-X
Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225-231. DOI: 10.1046/j.1365-2249.2000.01131.x
Wang Z, Yunis D, Irigoyen M, Kitchens B, Bottaro A, Alt FW, et al. Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clin Immunol. 1999;91(3):263-270. DOI: 10.1006/clim.1999.4702
Suzuki H, Kaneko H, Fukao T, Jin R, Kawamoto N, Asano T, et al. Various expression patterns of alpha1 and alpha2 genes in IgA deficiency. Allergol Int. 2009;58(1):111-117. DOI: 10.2332/allergolint.O-08-549
Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829-834. DOI: 10.1038/ng1601
Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, Pan-Hammarstrom Q, Kaartinen T, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 2009;10(2):151-161. DOI: 10.1038/gene.2008.89
Edwards E, Razvi S, Cunningham-Rundles C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol. 2004;111(1):93-97. DOI: 10.1016/j.clim.2003.12.005
Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin Exp Immunol. 1981;45(2):299-304.
Aghamohammadi A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009;29(1):130-136. DOI: 10.1007/s10875-008-9229-9
Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Nat Acad Sci U S A. 2004;101(7):1981-1986. Disponible en: https://www.pnas.org/content/101/7/1981
Janzi M, Kull I, Sjoberg R, Wan J, Melen E, Bayat N, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009;133(1):78-85. DOI: 10.1016/j.clim.2009.05.014
Zinneman HH, Kaplan AP. The association of giardiasis with reduced intestinal secretory immunoglobulin A. Am J Dig Dis. 1972;17(9):793-797. DOI: 10.1007/BF02231148
Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21(5):303-309. DOI: 10.1023/a:1012241117984
Sherkat R, Shoaei P, Parvaneh N, Babak A, Kassaian N. Selective antibody deficiency and its relation to the IgG2 and IgG3 subclass titers in recurrent respiratory infections. Iran J Immunol. 2013;10(1):55-60.
Janssen LMA, Macken T, Creemers MCW, Pruijt JFM, Eijk JJJ, de Vries E. Truly selective primary IgM deficiency is probably very rare. Clin Exp Immunol. 2018;191(2):203-11. DOI: 10.1111/cei.13065
Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36(5):490-501. DOI: 10.1007/s10875-016-0291-4
Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990-993. DOI: 10.1126/science.7679801
Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72(2):291-300. DOI: 10.1016/0092-8674(93)90668-g
Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565-575. DOI: 10.1016/s0092-8674(00)00079-9
Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98(22):12614-12619. DOI: 10.1073/pnas.221456898
Imai K, Catalan N, Plebani A, Marodi L, Sanal O, Kumaki S, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest. 2003;112(1):136-142. DOI: 10.1172/JCI18161
Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2(3):223-228.
Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, et al. Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest. 1998;102(4):853-60. DOI: 10.1038/85277
Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest. 1999;103(8):1151-1158. DOI: 10.1172/JCI5891
Lougaris V, Lanzi G, Baronio M, Gazzurelli L, Vairo D, Lorenzini T, et al. Progressive severe B cell and NK cell deficiency with T cell senescence in adult CD40L deficiency. Clin Immunol. 2018;190:11-14. DOI: 10.1016/j.clim.2018.02.008
Cabral-Marques O, Klaver S, Schimke LF, Ascendino EH, Khan TA, Pereira PV, et al. First report of the Hyper-IgM Syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol. 2014;34(2):146-156. DOI: 10.1007/s10875-013-9980-4
De Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F. CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol. 1999;29(1):367-373. DOI: 10.1002/(SICI)1521-4141(199901)29:01<367::AID-IMMU367>3.0.CO;2-4
Cabral-Marques O, Franca TT, Al-Sbiei A, Schimke LF, Khan TA, Feriotti C, et al. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-gamma. J Allergy Clin Immunol. 2018;142(5):1571-1588.e9. DOI: 10.1016/j.jaci.2018.02.026
Ferrua F, Galimberti S, Courteille V, Slatter MA, Booth C, Moshous D, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: Results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. J Allergy Clin Immunol. 2019;143(6):2238-2253. DOI: 10.1016/j.jaci.2018.12.1010
Janeway CA, Apt L, Gitlin D. Agammaglobulinemia. Trans Assoc Am Physicians. 1953;66:200-202.
Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34-48. DOI: 10.1006/clim.1999.4725
Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, de Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. 2016;53(9):575-590. DOI: 10.1136/jmedgenet-2015-103690
Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018;67(1):43-54. DOI: 10.1016/j.alit.2017.06.003
Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77-85. DOI: 10.1182/blood-2007-06-091744.
Horn J, Thon V, Bartonkova D, Salzer U, Warnatz K, Schlesier M, et al. Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workup and therapeutic strategy. Clin Immunol. 2007;122(2):156-162. DOI: 10.1016/j.clim.2006.10.002
Park MA, Li JT, Hagan JB, Maddox DE, Abraham RS. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372(9637):489-502. DOI: 10.1016/S0140-6736(08)61199-X
Venhoff N, Emmerich F, Neagu M, Salzer U, Koehn C, Driever S, et al. The role of HLA DQ2 and DQ8 in dissecting celiac-like disease in common variable immunodeficiency. J Clin Immunol. 2013;33(5):909-916. DOI: 10.1007/s10875-013-9892-3
Yong PF, Thaventhiran JED, Grimbacher B. “A rose is a rose is a rose,” but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol. 2011;111:47-107. DOI: 10.1016/B978-0-12-385991-4.00002-7
Albin S, Cunningham-Rundles C. An update on the use of immunoglobulin for the treatment of immunodeficiency disorders. Immunotherapy. 2014;6(10):1113-1126. DOI: 10.2217/imt.14.67
Gernez Y, Baker MG, Maglione PJ. Humoral immunodeficiencies: conferred risk of infections and benefits of immunoglobulin replacement therapy. Transfusion. 2018;58(Suppl 3):3056-3064. DOI: 10.1111/trf.15020.
Papadopoulou-Alataki E, Hassan A, Davies EG. Prevention of infection in children and adolescents with primary immunodeficiency disorders. Asian Pac J Allergy Immunol. 2012;30(4):249-258. Disponible en: https://www.apjai-journal.org/wp-content/uploads/2017/09/2PreventionofinfectionVol30No4December2012P249.pdf
Rudilla F, Franco-Jarava C, Martínez-Gallo M, García-Prat M, Martín-Nalda A, Rivière J, et al. Expanding the clinical and genetic spectra of primary immunodeficiency-related disorders with clinical exome sequencing: expected and unexpected findings. Front Immunol. 2019;10:2325. DOI: 10.3389/fimmu.2019.02325
Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847. DOI: 10.3389/fimmu.2017.00847

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2020 Revista Alergia México