Alergia alimentaria y contaminación ambiental
PDF (Spanish)
XML (Spanish)

Keywords

Alergia alimentaria
Medio ambiente
Enfermedades alérgicas
Exposoma
Barrera epitelial
Contaminantes del aire

Abstract

La interacción entre el potencial genético y el medio ambiente, especialmente el aumento de la urbanización y la gestión inadecuada de residuos contribuye con la manifestación de enfermedades alérgicas. Los pacientes pediátricos son los más vulnerables, debido a la inmadurez de los sistemas respiratorio e inmunológico. La exposición prenatal y posnatal a contaminantes del aire, tanto en exteriores como interiores, acelera o agrava la morbilidad y mortalidad por enfermedades alérgicas. El "exposoma", que abarca todas las exposiciones ambientales a lo largo de la vida, influye en la salud. Las agresiones biológicas y químicas alteran la barrera epitelial, desencadenando respuestas inflamatorias y favoreciendo enfermedades alérgicas, como alergias alimentarias. El uso descontrolado de combustibles tóxicos, material particulado, detergentes y otros factores contribuyen con el deterioro continuo de la barrera epitelial intestinal, aumentando el riesgo de enfermedades alérgicas. Es importante tomar medidas urgentes para abordar estos problemas y proteger la salud del planeta.

PDF (Spanish)
XML (Spanish)

References

Pawankar R, Wang JY, et al. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac Allergy 2020; 10 (1): e11. doi: 10.5415/apallergy.2020.10.e11.

Pacheco SE. Catastrophic effects of climate change on children’s health start before birth. J Clin Invest. 2020; 130 (2): 562-564. doi:10.1172/JCI135005.

Helldén D, Anderson C, Nilsson M, Ebi KL, et al. Climate change and child health: a scoping review and an expanded conceptual framework. Lancet Planet Health 2021; 5: e164-75. doi:10.1016/S2542-5196(20)30274.

Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 2021; 21 (11): 739-751. https://doi.org/10.1038/s41577-021-00538-7.

Abolhasani R, Araghi F, Tabary M, Aryannejad A, et al. The impact of air pollution on skin and related disorders: A comprehensive review. Dermatol Ther 2021; 34 (2): e14840. doi: 10.1111/dth.14840.

Peden DB. The "envirome" and what the practitioner needs to know about it. Ann Allergy Asthma Immunol 2019; 123 (6): 542-9. doi:10.1016/j.anai.2019.09.014.

Moran TP. The External Exposome and Food Allergy. Curr Allergy Asthma Rep 2020; 20 (8): 37. doi: 10.1007/s11882-020-00936-2.

Celebi Sözener Z, Cevhertas L, Nadeau K, Akdis M, et al. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol 2020; 145 (6): 1517-1528. doi: 10.1016/j.jaci.2020.04.024.

Mutlu EA, Comba IY, Cho T, Engen PA, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut 2018; 240: 817-30. doi: 10.1016/j.envpol.2018.04.130.

Brauer M, Hoek G, Smit HA, de Jongte JC, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 2007; 29 (5): 879-88. doi: 10.1183/09031936.00083406.

Gruzieva O, Bellander T. Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol 2012; 129 (1): 240-6. doi: 10.1016/j.jaci.2011.11.001.

Sbihi H, Allen RW, et al. Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study. Environ Health Persp 2015; 123 (9): 902-8. doi: 10.1289/ehp.1408700.

Sordillo JE, Rifas-Shiman SL, et al. Prenatal oxidative balance and risk of asthma and allergic disease in adolescence. J Allergy Clin Immunol 2019; 144 (6): 1534-41e5. doi: 10.1016/j.jaci.2019.07.044.

Bowatte G, Lodge C, Lowe AJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy 2015; 70 (3): 245-56. doi: 10.1111/all.12561.

Rosario-Filho NA, Urrutia-Pereira M, et al. Air pollution and indoor settings. World Allergy Organ J 2021; 14 (1): 100499. doi: 10.1016/j.waojou.2020.100499

Yu M, Mukai K, Tsai M, Galli ST. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol 2018; 142 (5): 1618-27.e9. doi: 10.1016/j.jaci.2018.04.001.

Thacher JD, Gruzieva O, et al. Parental smoking and development of allergic sensitization from birth to adolescence. Allergy 2016; 71 (2): 239-48. doi: 10.1111/all.12792.

Saulyte J, Regueira C, et al. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS medicine 2014; 11 (3): e1001611. doi: 10.1371/journal.pmed.1001611.

Sheehan WJ, Taylor SL, et al Environmental Food Exposure: What Is the Risk of Clinical Reactivity From Cross-Contact and What Is the Risk of Sensitization. J Allergy Clin Immunol Pract 2018; 6 (6): 1825-32. doi: 10.1016/j.jaip.2018.08.001.

Brough HA, Makinson K, Penagos M, Maleki SJ, et al. Distribution of peanut protein in the home environment. J Allergy Clin Immunol 2013; 132 (3): 623-9. doi: 10.1016/j.jaci.2013.02.035.

Bertelsen RJ, Faeste CK, et al. Food allergens in mattress dust in Norwegian homes - a potentially important source of allergen exposure. Clin Exp Allergy 2014; 44 (1): 142-9. doi: 10.1111/cea.12231.

Trendelenburg V, Tschirner S, et al. Hen's egg allergen in house and bed dust is significantly increased after hen's egg consumption-A pilot study. Allergy 2018; 73 (1): 261-4. doi: 10.1111/all.13303.

Tordesillas L, Goswami R, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J. Clin Investig 2014; 124 (11): 4965-75. doi: 10.1172/jci75660.

Brough HA, Kull I, et al. Environmental peanut exposure increases the risk of peanut sensitization in high-risk children. Clin Exp Allergy 2018; 48 (5): 586-93. doi: 10.1111/cea.13111.

Perkin MR, Logan K, et al. Efficacy of the Enquiring About Tolerance (EAT) study among infants at high risk of developing food allergy. J Allergy Cloin Immunol 2019; 144 (6): 1606-14 e2. doi:10.1016/j.jaci.2019.06.045.

Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol 2012; 129 (5): 1187-97. doi: 10.1016/j.jaci.2012.02.036.

Carlson G, Coop C. Pollen food allergy syndrome (PFAS): A review of current available literature. Ann Allergy Asthma Immunol 2019; 123 (4): 359-365. doi: 10.1016/j.anai.2019.07.022.

Wang J, Calatroni A, et al. Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J Allergy Clin Immunol 2011; 128 (4): 834-7. doi: 10.1016/j.jaci.2011.07.045.

Ng N, Lam D, et al House dust extracts have both TH2 adjuvant and tolerogenic activities. J Allergy Clin Immunol 2006; 117 (5): 1074-81. doi: 10.1016/j.jaci.2006.03.025.

Walker MT, Green JE, et al. Cook-Mills JM. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol 2018; 141 (5): 1711-25 e9. doi: 10.1016/j.jaci.2018.02.003.

Von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 2010; 10 (12): 861-8. doi: 10.1038/nri2871.

Stein MM, Hrusch CL, Gozdz J, Igartua C, et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N Engl J Med 2016; 375 (5): 411-421. doi: 10.1056/NEJMoa1508749.0)

McGowan EC, Bloomberg GR, et al. Influence of early-life exposures on food sensitization and food allergy in an inner-city birth cohort. J Allergy Clin Immunol 2015; 135 (1): 171-8. doi: 10.1016/j.jaci.2014.06.033.

Tsuang A, Grishin A, et al. Endotoxin, food allergen sensitization, and food allergy: A complementary epidemiologic and experimental study. Allergy 2020; 75 (3): 625-635. doi: 10.1111/all.14054.

Xian M, Wawrzyniak P, et al.Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol 2016; 138: 890-3.e9.

Wang M, Tan G, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol 2019; 143: 1892-903.

Cani PD, Everard A. Keeping gut lining at bay: impact of emulsifiers. Trends Endocrinol. Metab 2015; 26: 273-4. doi: 10.1016/j.tem.2015.03.009

Cordier M, Uehara T. How much innovation is needed to protect the ocean from plastic contamination? Sci Total Environ 2019; 670: 789-99. doi: 10.1016/j.scitotenv.2019.03.258.

Galloway TS. Micro-and nano-plastics and human health. Marine anthropogenic litter. 2015, Springer, Bremerhaven, Germany; pp: 343-66.

Stock V, Bohmert L, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 2019; 93: 1817-33. doi: 10.1007/s00204-019-02478-7.

Jin Y, Lu L, et al Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 2019; 649: 308-17. doi: 10.1016/j.scitotenv.2018.08.353

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Alergia México

Downloads

Download data is not yet available.