Abstract
Background: The common variable immunodeficiency (CVID) is characterized by absence of isohemagglutinins and two standard deviations of normal levels of immunoglobulins. His treatment includes administering immunoglobulin, more frequently intravenous (IVIG). A side effect is the possible severe renal insuf ciency secondary to the use of preparations containing sucrose. These patients have weight loss, decreased muscle mass associated with gastrointestinal disorders and bronchiectasis that limit physical activity and other factors. There are different formulas for determining the glomerular ltration rate, we compared the most commonly used to determine the most appropriate in this population.
Objective: To determine the correlation between glomerular ltration rate using the MDRD formula, CKD-EPI and Cockcroft-Gault and that obtained through the urine creatinine clearance 24 h in patients with common variable immunode ciency who are treated with IVIG.
Patients and method: A transversal, observational and descriptive study that included 19 patients with common variable immunode ciency, 12 women and 7 men, mean age 36 years, was done. Descriptive statistics with mean, median, mode and standard deviation was used. To measure the concordance of the measurements for quantitative variables intra- class correlation coef cient was used and to determine the correlation between the stages of renal function with different formulas kappa index was calculated.
Results: The values of the intraclass correlation coef cient showed a good correlation between creatinine clearance in 24 h urine with CKD-EPI, mediocre with MDRD and nil with the Cockroft-Gault formula.
Conclusions: Glomerular ltration rate obtained with CKD-EPI proved to be partially most useful, with a good correlation in relation to urine creatinine clearance in 24 h. Its routine use is recommended over other formulas in common variable immunodeficiency patients with suspected renal disease secondary to the use of IVIG.
References
Scott E, Trisha T. Intravenous immunoglobulin in the management of lupus nephritis. Autoimmune Dis 2012;10:389-393.
Kroser J, Rudnick M, Hoffman B. Acute renal failure after intravenous immunoglobulin therapy. J Rheumatol 1994;21:347-349.
Centers for Disease Control and Prevention. Renal insufficiency and failure associated with immune globulin intravenous therapy-United States, 1985-1998. Morbid Mortal Weekly Report 1999;48:518-521.
Tufan F, Kamali S, Erer B. Safety of high-dose intravenous immunoglobulin in systemic autoimmune diseases. Clin Rheumatol 2007;26:1913-1915.
Itkin YM, Trujillo T. Intravenous immunoglobulin-associated acute renal failure: case series and literature review. Pharmacotherapy 2005;25:886-892.
Sati H, Watson H. Incidence and associations of acute renal failure complicating high-dose intravenous immunoglobulin therapy. Br J Haematol 2001;113:556-557.
Fakhouri F. Intravenous immunoglobulins and acute renal failure: mechanism and prevention. Rev Med Inter Mayo 2007;1:4-6.
Orbach H, Katz U, Sherer Y. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 2005;29:173-184.
Kwan TH, Tong M. Acute renal failure related to intravenous immunoglobulin infusion in an elderly woman. Hong Kong Med J 2005;11:45-49.
Chacko B, John G. Osmotic nephropathy resulting from maltose-based intravenous immunoglobulin therapy. Ren Fail 2006;28:193-195.
Michael A, Sushrut S. Established and emerging markers of kidney function. Clin Chem 2012;58:680-689.
Levey A, Stevens L, Schmid C. ¿Hay una ecuación mejor para estimar el filtrado glomerular renal a partir de la creatinina en sangre y la edad? Nefrol Clín 2009;6:33-35.
Gimeno J, Lou L. Concordancia entre fórmulas de Cockroft Gault y del estudio MDRD para estimar la tasa de filtración glomerular en pacientes con diabetes mellitus tipo 2. Nefrología 2006;26:15-22.
Jabary N, Martín D, Muñoz M. Creatinina sérica y aclaramiento de creatinina para la valoración de la función renal en hipertensos esenciales. Nefrología 2006;26:30-37.
Levey A. A new equation to estimate glomerular filtration rate. Ann Internal Med 2009;9:604-612.
Kunihiro M, Marcello T, Anita L. Clinical risk implications of the CKD-EPI equation compared with the MDRD for estimated GFR. Am J Kidney Dis 2012;60:241-249.
Lou L, Campos B, García O. Fórmulas de cálculo de la función renal: fortalezas y debilidades. Nefrología 2009;29:94-100.
Levey A. Estimating GFR using the CKD-EPI: More accurate GFR estimates, lower CKD prevalence estimate, and better risk predictions. Am J Kidney Dis 2010;55:622-627.
Coresh J, Stevens L. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens 2006;15:276-284.
Rigalleau V, Lasseur C. Estimation of glomerular filtration rate in diabetic subjects. Diabetes Care 2005;28:838-843.
Stevens L, Coresh J, Feldman H. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 2007;18:2749-2757.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2014 Revista Alergia México