Ontogenia de los linfocitos B
PubMed (Inglés)

Palabras clave

linfocitos B
progenitores linfoides tempranos
médula ósea
microambiente hematopoyético
diferenciación linfoide

Resumen

El desarrollo de los linfocitos B a partir de células troncales hematopoyéticas es un proceso altamente regulado y continuo en el que se pierden gradualmente los potenciales de diferenciación múltiple y se adquieren funciones especializadas del linaje. A 50 años de su descubrimiento, el conocimiento actual de la diferenciación temprana de las células B proviene, en gran medida, del aislamiento y caracterización de los progenitores en la médula ósea que dan inicio al programa linfoide y de la definición de patrones de actividad transcripcional que controlan las decisiones de los destinos celulares. De especial relevancia ha sido la intercomunicación de los precursores con los componentes del microambiente hematopoyético para la generación de nuevos modelos que integren todos los elementos de regulación de este complejo proceso y para la comprensión de esta rama del sistema inmunológico adaptativo en la enfermedad. Esta revisión ofrece un panorama general del complejo proceso de diferenciación linfoide: la organización jerárquica y características biológicas de las células primitivas que participan en sus etapas más tempranas, hasta los principios que rigen su interdependencia con el microambiente hematopoyético.
PubMed (Inglés)

Referencias

Cooper MD. The early history of B cells. Nature Reviews Immunology 2015;15:191-197.

Cooper MD, Peterson RD, Good RA. Delineation of the Thymic and bursal lymphoid systems in the chicken. Nature 1965;205:143-146.

Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997;91:661-672.

Kincade PW, Lawton AR, Cooper MD. Restriction of surface immunoglobulin determinants to lymphocytes of the plasma cell line. J Immunol 1971;106:1421-1423.

Osmond DG, Nossal GJ. Differentiation of lymphocytes in mouse bone marrow. II. Kinetics of maturation and renewal of antiglobulin-binding cells studied by double labeling. Cel Immunol 1974;13:132-145.

Sakano H, Maki R, Kurosawa Y, Roeder W, Tonegawa S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 1980;286:676-683.

Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002;17:117-130.

Pelayo R, Welner R, Perry SS, Huang J, et al. Lymphoid progenitors and primary routes to becoming cells of the immune system. Current Opin Imunol 2005;17:100-107.

Baba Y, Pelayo R, Kincade PW. Relationships between hematopoietic stem cells and lymphocyte progenitors. Trends Immunol 2004;25:645-649.

Reth M, Nielsen P. Signaling circuits in early B-cell development. Advances in Immunology 2014;122:129-175.

Pelayo R, Dorantes-Acosta E, Vadillo E, Fuentes-Panana EM. From HSC to B-lymphoid cells in normal and malignant hematopoiesis: InTech, 2012.

Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research 1961;14:213-222.

Dick JE. Stem cell concepts renew cancer research. Blood 2008;112:4793-4807.

Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010;2:640-653.

Vadillo E, Pelayo R. El sistema hematopoyético a partir de células troncales. In: Pelayo R, editor. Células Troncales y Medicina Regenerativa. Mexico: PUIS, 2011;143-171.

Welner RS, Kincade PW, Pelayo R. Linfopoyesis temprana en médula ósea adulta. Inmunología 2007;26:135-144.

Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:58-62.

Mansson R, Hultquist A, Luc S, Yang L, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 2007;26:407-419.

Lai AY, Lin SM, Kondo M. Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. J Immunol 2005;175:5016-5023.

Yokota T, Kouro T, Hirose J, Igarashi H, et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity 2003;19:365-375.

Perry SS, Welner RS, Kouro T, Kincade PW, Sun XH. Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. J Immunol 2006;177:2880-2887.

Welner RS, Pelayo R, Garrett KP, Chen X, et al. Interferonproducing killer dendritic cells (IKDCs) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors. Blood 2007;109:4825-4931.

Medina KL, Garrett KP, Thompson LF, Rossi MI, et al. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nature Immunology 2001;2:718-724.

Kondo M, Wagers AJ, Manz MG, Prohaska SS, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Ann Rev Immunol 2003;21:759-806.

Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K. Resolution and characterization of pro-B and pre-pro- B cell stages in normal mouse bone marrow. J Exp Med 1991;173:1213-1225.

Rumfelt LL, Zhou Y, Rowley BM, Shinton SA, Hardy RR. Lineage specification and plasticity in CD19- early B cell precursors. J Exp Med 2006;203:675-687.

Li YS, Wasserman R, Hayakawa K, Hardy RR. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996;5:527-535.

Tudor KS, Payne KJ, Yamashita Y, Kincade PW. Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 2000;12:335-345.

Pelayo R, Hirose J, Huang J, Garrett KP, et al. Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 2005;105:4407-4415.

Allman D, Li J, Hardy RR. Commitment to the B lymphoid lineage occurs before DH-JH recombination. J Exp Med 1999;189:735-740.

Pelayo R, Welner RS, Nagai Y, Kincade PW. Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow. Semin Immunol 2006;18:2-11.

Medina KL, Pongubala JM, Reddy KL, Lancki DW, et al. Assembling a gene regulatory network for specification of the B cell fate. Develop Cell 2004;7:607-617.

Sun XH. Multitasking of helix-loop-helix proteins in lymphopoiesis. Adv Immunol 2004;84:43-77.

Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999;401:556-562.

Busslinger M. Transcriptional control of early B cell development. Ann Rev Immunol 2004;22:55-79. 36. Blom B, Spits H. Development of human lymphoid cells. Ann Rev Immunol 2006;24:287-320.

Pelayo R, Miyazaki K, Huang J, Garrett KP, et al. Cell cycle quiescence of early lymphoid progenitors in adult bone marrow. Stem Cells 2006;24:2703-2713.

Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005;202:1599-1611.

Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25:977-988.

Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011;208:421-428.

Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol 2005;26:426-433.

Nagasawa T. CXCL12/SDF-1 and CXCR4. Frontiers Immunol 2015;6:301.

Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nature Rev Immunol 2006;6:107-116.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2016 Revista Alergia México

Descargas

##plugins.themes.healthSciences.displayStats.noStats##